

Probabilistic Algorithms for Mining in Large Streams

Philippe Flajolet,
Algorithms; INRIA-Rocquencourt (France)
— ITC Paris, September 2009 -

Determine quantitative characteristics of LARGE data ensembles?

In-between:

- Computer Science (algorithms, complexity)
- Mathematics (combinatorics, probability, asymptotics)
- Application fields (texts, genomic seq's, networks, stats ...)

1 ALGORITHMICS OF MASSIVE DATA SETS

$$
\text { Routeurs } \approx \text { Terabits } / \mathrm{sec}\left(10^{12} \mathrm{~b} / \mathrm{s}\right)
$$

Google indexes 10 billion pages \& prepares 100 Petabytes of data $\left(10^{17} \mathrm{~B}\right)$.

> Stream algorithms = one pass; memory \leq one printed page

Example: Propagation of a virus and attacks on networks

(Raw ADSL traffic)
Raw volume

(Attack)
Cardinality
(based on Estan-Vargese)

The cardinality problem

- Data: stream $s=s_{1} s_{2} \cdots s_{\ell}$,

$$
s_{j} \in \mathcal{D}, \quad \ell \propto 10^{9} .
$$

- Output: Estimation of the cardinality $n, n \propto 10^{7}$.
- Conditions:
very little extra memory;
a single "simple" pass;
no statistical hypothesis.
accuracy within 1% or 2%.

More generally ...

- Cardinality: number of distinct values;
- Icebergs: number of values with relative frequency > 1/30;
- Mice: number of values with absolute frequency <10;
- Elephants: number of values with absolute frequency > 100;
- Moments: measure of the profile of data...

Applications: networks; quantitative data mining; very large data bases and sketches; internet; fast rough analysis of sequences.

2 ICEBERGS

A k-iceberg is a value whose relative frequency is $>1 / k$.
abracadabraba babies babble bubbles alhambra
very little extra memory; a single "simple" pass; no statistical hypothesis. accuracy within 1% or 2%.
$k=2$. Majority $\equiv 2$-iceberg: a b r a c a d a b r a ...

$$
\text { The gang war } \equiv 1 \text { register 〈value, counter〉 }
$$

$k>2$. Generalisation with $k-1$ registers.

Provides a superset -no loss— of icebergs.
(+ Filter and combine with sampling.)
(Karp-Shenker-Papadimitriou 2003)

3 CARDINALITY

- HASHING provides values that are (quasi) uniformly random.
- Randomness becomes reproducible:

$$
\begin{array}{cccc}
\text { canada uruguay france ... uruguay ... } \\
3589 & & 3589 &
\end{array}
$$

A data stream \leadsto a multi-set of uniform reals $[0,1]$
An observable = a function of the hashed set.

An observable =a function of the hashed set.
—A. The minimum of values seen is 0.0000001101001

- B. We have seen all patterns $0 . x_{1} \cdots x_{20}$ for $x_{j} \in\{0,1\}$.

NB: "We have seen a total of 1968 bits $=1$ is not an observable.

Plausibly(??):

A indicates $n \approx 2^{7}$ (?); B indicates $n \geq 2^{20}$ (!).
(F.-Martin 1985), (Astrahan-Schkolnick-Whang 1987), (Alon-Matias-Szegedy 1999)...

3.1 Hyperloglog

The internals of the best algorithm known

Step 1. Choose the observable.
The observable O is the maximum of positions of the first 1

11000	10011	01010	10011	01000	00001	01111
1	1	2	1	2	5	2

$=$ a single integer register $<32\left(\mathrm{n}<10^{9}\right)$
\equiv a small "byte" (5 bits)
(F-Martin 1985); (Durand-F. 2003); (F-Fusy-Gandouet-Meunier 2007)

Step 2. Analyse the observable.

Theorem.
(i) Expectation: $\mathbb{E}_{n}(\mathrm{O})=\log _{2}(\varphi \mathfrak{n})+$ Oscillations $+\mathrm{o}(1)$.
(ii) Variance: $\mathbb{V}_{n}(\mathrm{O})=\xi+$ oscillations $+\mathrm{o}(1)$.

Get estimate of the logarithmic value of n with a systematic bias (φ) and a dispersion (ξ) of $\approx \pm 1$ binary order of magnitude.
\leadsto Correct bias; improve accuracy!

The Mellin transform: $\int_{0}^{\infty} f(x) x^{s-1} d x$.

- Factorises linear superpositions of models at different scales;
- Relates asymptotics and complex singularities of \int.

(singularities)

(asymptotics)

Algorithm Skeleton(S:stream):
initialise a register $R:=0 ;$
for $x \in S$ do
$\quad h(x)=b_{1} b_{2} b_{3} \cdots ;$
$\rho:=\operatorname{position}_{1 \uparrow}\left(b_{1} b_{2} \cdots\right) ;$
$R:=\max (R, \rho) ;$
compute the estimator of $\log _{2} n$.
= a single "small byte" of $\log _{2} \log _{2} \mathrm{~N}$ bits: 5 bits for $\mathrm{N}=10^{9}$;
= correction by $\varphi=e^{-\gamma} / \sqrt{2}$; ($\gamma:=$ Euler's constant)
= unbiased; limited accuracy: \pm one binary order of magnitude.

Step 3. Design a real-life algorithm.
Plan A: Repeat m times the experiment \& take arithmetic average. +Correct bias.
Estimate $\log _{2} n$ with accuracy $\approx \pm \frac{1}{\sqrt{m}}$.
($\mathrm{m}=1000 \Longrightarrow$ accuracy $=$ a few percents.)

1.

Computational costs are multiplied by m .

+ Limitations due to dependencies ..

Plan B, "Stochastic averaging": Split data into m batches; compute finally an average of the estimates of each batch.


```
Algorithm HyperLoglog(S : stream; \(m=2^{10}\) ):
initialise \(m\) registers \(R[\) ] := 0;
for \(x \in S\) do
```

```
    \(h(x)=b_{1} b_{2} \cdots ; \quad A:=\left\langle b_{1} \cdots b_{10}\right\rangle_{\text {base } 2 ;} ;\)
```

 \(h(x)=b_{1} b_{2} \cdots ; \quad A:=\left\langle b_{1} \cdots b_{10}\right\rangle_{\text {base } 2 ;} ;\)
 \(\rho:=\operatorname{position}_{1 \uparrow}\left(\mathrm{~b}_{11} \mathrm{~b}_{12} \cdots\right)\);
 \(\rho:=\operatorname{position}_{1 \uparrow}\left(\mathrm{~b}_{11} \mathrm{~b}_{12} \cdots\right)\);
 \(R[A]:=\max (R[A], \rho)\);
 \(R[A]:=\max (R[A], \rho)\);
 compute the estimator of cardinality n.

```

The complete algorithm has O (12) instructions + hashing. It computes the harmonic mean of \(2^{R[j]}\); then multiplies by \(m\).

Analysis-based algorithmic engineering: correct the systematic bias; then the non-asymptotic bias.

Mathematical analysis (combinatorial, probabilistic, asymptotic) enters design in a non-trivial fashion.
(Here: Mellin + saddle-point methods).
\(\leadsto\) Theorem: For \(m\) registers, the standard (relative) error is \(\frac{1.035}{\sqrt{m}}\).
With 1024 bytes, estimate cardinalities till \(10^{9}\) with standard error 1.5\%.


Estimate \(n^{\circ} \approx 30,897\) against \(n=28,239\) distinct words.
Error is \(+9.4 \%\) for 128 bytes(!!)
3.2 Distributed applications


Given 90 phonebooks, how many different names?

Collection of the registers \(R_{1}, \ldots, R_{m}\) of \(S \equiv\) signature of \(S\).
Signature of union \(=\max /\) components \((\mathbb{V})\) :
\[
\left\{\begin{array}{cl}
\operatorname{sign}(A \cup B) & =\operatorname{sign}(A) \vee \operatorname{sign}(B) \\
|A \cup B| & =\operatorname{estim}(\operatorname{sign}(A \cup B)) .
\end{array}\right.
\]

Estimate within \(1 \%\) the number of different names by sending 89 faxes, each of about one-quarter of a printed page.

\subsection*{3.3 Document comparison}


Can one classify a million books, according to similarity, with a portable computer?
\[
\left\{\begin{aligned}
|A| & =\operatorname{estim}(\operatorname{sign}(A)) \\
|B| & =\operatorname{estim}(\operatorname{sign}(B)) \\
|A \cup B| & =\operatorname{estim}(\operatorname{sign}(A) \vee \operatorname{sign}(B))
\end{aligned}\right.
\]
\[
\operatorname{simil}(A, B)=\frac{|A|+|B|-|A \cup B|}{|A \cup B|} .
\]

Given a library of N books (e.g.: \(\mathrm{N}=10^{6}\) ) with total volume of V characters (e.g.: \(V=10^{11}\) ).
- Exact solution: quadratic time and/or linear storage
- Solution by signatures: linear time \(+\mathrm{O}\left(\mathrm{N}^{2}\right) \&\) small storage.

\section*{4 ADAPTIVE SAMPLING}


Can one localise the geographical center of a country given a file 〈persons \& townships〉?
— Exact: yes! = eliminate duplicate cities ("projection")
- Approximate (?): Use straight sampling
\(\Longrightarrow\) France = somewhere very near to PARIS(!!).

Sampling uniformly over the domain of distinct values?
Adaptive sampling:

(Wegman 1980) (F 1990) (Louchard 1997)

Analysis is related to the digital tree structure: data compression; text search; communication protocols; \&c.
- Provides an unbiased sample of distinct values;
- Provides an unbiased cardinality estimator:
\[
\operatorname{estim}(S):=|C| \cdot 2^{p} .
\]

Hamlet
- Straight sampling ( 13 elements):
and, and, be, both, \(i\), in, is, leaue, my, no, ophe, state, the
Google (leaue \(\mapsto\) leave, ophe \(\mapsto\) ) \(=38,700,000\).
- Adaptive sampling ( 10 elements):
danskers, distract, fine, fra, immediately, loses, martiall, organe, passeth, pendant
Google \(=8\), all pointing to Shakespeare/ Hamlet \(\leadsto\) mice, later!

\section*{5 MICE}


\section*{Adaptive sampling plus counters!}
- Hamlet: danskers \({ }^{1}\), distract¹, fine \(^{9}\), fra \(^{1}\), immediately \({ }^{1}\), loses \({ }^{1}\), martiall \({ }^{1}\), organe \({ }^{1}\), passeth \({ }^{1}\), pendant \({ }^{1}\).

Cache of size \(=100\), gives a sample of 79 elements.
\(\mathbf{1}^{\mathbf{5 0}}, \mathbf{2}^{\mathbf{1 4}}, \mathbf{3}^{\mathbf{4}}, \mathbf{4}^{\mathbf{2}}, \mathbf{5}^{\mathbf{1}}, \mathbf{6}^{\mathbf{1}}, \mathbf{9}^{\mathbf{1}}, \mathbf{1 3}^{\mathbf{1}}, \mathbf{1 5}^{\mathbf{1}}, \mathbf{2 8}^{\mathbf{1}}, \mathbf{4 3}^{\mathbf{2}}, \mathbf{1 2 8}^{\mathbf{1}}\).

The ten most frequent words of Hamlet are the, and, to, of, i, you, a, my, it, in. They represent \(>20 \%\) of the whole text. With 20 words, capture \(30 \%\); with 50 words, \(44 \%\). 70 words capture \(\mathbf{5 0 \%}\) du texte!.

\section*{6 ELEPHANTS}


A k-elephant is a value whose absolute frequency is \(\geq \mathrm{k}\).




Network attacks by Denial of Service (Y. Chabchoub, Ph. Robert)

Complexity Theorem (Alon et al.) It is not possible to determine the largest frequency with sub-linear memory.
- One cannot find a needle in a haystack.
- But one can still find (easily) much information...

Bi-modal traffic: A stream composed of 1-mice and 10-elephants.

\[
\left\{\begin{array}{c}
\left(p=\frac{1}{10}\right) \\
\mathrm{N}=\mathrm{N}_{s}+\mathrm{N}_{e}+\text { noise } \\
\mathrm{M}=\frac{1}{10} \mathrm{~N}_{s}+0.65 \mathrm{~N}_{e}+\text { noise }
\end{array}\right.
\]

Solution: \(\quad \mathrm{N}_{\mathrm{e}} \approx \frac{10 \mathrm{M}-\mathrm{N}}{5.5}\)
(A. Jean-Marie, O. Gandouet, 2007)

\section*{7 APPLICATIONS}
- Data mining in graphs
- Document classification: an experiment
- Fast mining in genomic sequences
- Profiling: frequency moments

- Number of symmetric links in large graph; number of triangles.
- The histogram of excentricities in the internet graph:


b) Histogram of diameters

Gain: \(\times 300\).
(Palmer, Gibbons, Faloutsos² \({ }^{2}\), Siganos 2001) Internet graph: 285k nodes, 430kedges.

How many languages? कश्यप:


(Pranav Kashyap: word-level encrypted texts; classification by language; use \(\vartheta \approx 20 \%\).)
+ Use shingles (overlapping blocks = small phrases) for finer classification.

\section*{Genome}

(Giroire 2006: \# patterns of length 13 in genome)

\section*{Profiling: frequency moments}

Alon-Matias-Szegedy: \(F_{p}:=\sum_{v}\left(f_{v}\right)^{p}\) where \(f_{v}:=\) frequency of value \(v\).


Use of random Gaussian projections for \(F_{2}\); Stable laws for \(0 \leq p \leq 2\).

\section*{Conclusions}


Possibilities (within limits!) of probabilistic algorithms.

Continuum: maths \(\leadsto\) comp. sc. \(\leadsto\) technology.```

