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Abstract – Data centers today are 

experiencing a rapid proliferation of switches 

as a direct result of the deployment of high-

density server platforms. Given the layered 

switching architecture found in today’s data 

centers, many of the switches are performing 

a simple aggregation function; that is, the 

majority of traffic is moving between 

downlinks and uplinks. However, despite this 

simple function, these switches contribute to 

a significant portion of the capital 

expenditure and ongoing administrative and 

management costs of the data center. This 

paper proposes a new technology that 

replaces these aggregating switches with a 

device that extends the ports of the switch in 

the next higher layer. This technology has the 

potential to reduce significantly the number 

of switches that must be managed in the data 

center as well as reduce the upfront capital 

expenditure costs. 

I. INTRODUCTION AND MOTIVATION 

Data centers today are experiencing a 

dramatic increase in the number of installed 

Ethernet switches as a direct result of the 

deployment of high-density servers and blade 

servers.  In addition, deployment of 

virtualization technology within servers has 

resulted in an even further increase in the 

number of installed switches. These switches 

are typically embedded within the actual 

server itself. It is important to note, however, 

that virtualization is not the sole source of this 

explosion in switch proliferation, but it has 

added significantly to this phenomenon.  

The growth in switch deployment has 

resulted in the corresponding growth of 

associated costs. 

It may also be observed that many of these 

switches serve little function other than to act 

as aggregation points within the network. They 

frequently perform minimal frame relay 

outside of the simple passing of frames 

between uplinks and downlinks. In effect, 

these switches are simply acting as additional 

ports for higher-level switches. Despite the 

fact that these switches are performing a 

relatively simple function, they account for 

much of the initial capital expenditure and 

ongoing management and administrative costs. 

To address these costs, a new technology 

has been proposed referred to as “Port 

Extension”. The Port Extension technology 

introduces a new device called a “Port 

Extender” that effectively acts as additional 

ports for the switch to which it is connected. 

The switch to which the Port Extender is 

connected is referred to as the “Controlling 

Switch”. The Controlling Switch and a set of 

Port Extenders connected to it form a single 

logical switch. Port Extenders are not 

individually managed but instead are managed 

as part of the combined switch entity. To the 

extent possible, all switching functions are 

performed in the Controlling Switch. This 

keeps the functionality of Port Extender 

limited and therefore the cost low. This also 

helps to keep the functionality of the 

Controlling Switch consistent across all ports 

realized using Port Extenders. 



II. PROBLEM STATEMENT 

The deployment of hundreds to thousands 

of switch devices with varying capabilities and 

performance as a result of high-density server 

technology (including but not limited to server 

virtualization) creates the following challenges 

that are addressed by the technology proposed 

by Port Extension: 

• High network management complexity and 

administrative cost 

• High initial capital expenditures 

• Stressed scalability limits and 

responsiveness of network applications 

due to: 

o Quantity of points of management 

o Quantity of management messages 

required for each point 

o Latency in response to each 

management message 

• Lack of visibility of internally switched 

frames 

• Server and network management 

conflicts 

III. REQUIREMENTS 

It was considered extremely important that 

the Port Extension technology provides 

exactly the same externally observable 

behavior of that provided by switches 

deployed in networks today. This is 

fundamental to ensuring interoperability. 

Deviating from such behavior opens the door 

for many unforeseen consequences. 

Furthermore, any requirement that an 

application or device be aware it is connected 

to a switch using Port Extension technology 

was seen as a significant barrier to acceptance 

and therefore highly undesirable. 

It was also considered highly desirable to 

drive complexity towards the Controlling 

Switch and out of the Port Extenders. This 

complexity would include functions such as 

address lookups, learning and aging functions, 

VLAN functions, and access control list 

processing. The most obvious reason for this 

requirement is to reduce overall cost. Since 

Port Extenders will outnumber Controlling 

Switches, it clearly makes sense to focus on 

reducing the cost of the Port Extenders. 

Equally important, however, is the fact that 

simplifying the Port Extender results in greater 

data center design and dynamic 

reconfiguration flexibility by reducing 

inconsistency of functionality of the network 

infrastructure. 

It is also required that the ports instantiated 

by Port Extenders operate with any device that 

could normally be connected to a standard 

switch port. This includes other switches, end 

stations, and other Port Extenders. In other 

words, the ports provided by Port Extenders 

must operate as any other port that is part of 

the Controlling Switch. 

Additionally, maintaining simplicity in the 

Port Extenders is a requirement to provide 

simple and efficient management capabilities. 

As a Controlling Switch becomes a single 

point of management for itself and all attached 

Port Extenders, the total number of points of 

management in the network is substantially 

reduced. More importantly, by keeping the 

majority of the functionality in the Controlling 

Switch, few management operations require 

the Controlling Switch to initiate additional 

protocol operations with the Port Extenders. 

For example, configuration of an ACL on a 

group of ports affects only the Controlling 

Switch and not the associated Port Extenders. 

Thus, the total number of management 

messages required and the latency of each of 

these messages is significantly reduced. 

Finally, to promote and simplify the 

development of Controlling Switches, Port 

Extension technology is designed to operate 

using the fundamental architecture common in 

existing switches today. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

IV. AN APPROACH 

Port Extension technology proposes to meet 

the previously stated requirements by 

providing the capability to combine distributed 

network components into a single logical 

802.1Q compliant switch. These components 

consist of: 

• A Controlling Switch 

• Distributed Port Extenders (that may be 

cascaded) 

• A protocol enabling control of the Port 

Extenders by the Controlling Switch 

Figure 1 illustrates a network utilizing Port 

Extension technology. 

The top switch in this figure represents the 

Controlling Switch. One of the ports on this 

switch is connected to a Port Extender. The 

Port Extender port that is connected to a 

Controlling Switch, or to a higher level Port 

Extender within a cascade, is referred to as an 

uplink port. This Port Extender is connected to 

four additional devices below it. Two of these 

devices are additional Port Extenders. The 

other two devices are conventional switches. 

The Controlling Switch and the three Port 

Extenders shown in this figure combine to 

form a single logical switch. The ports of the 

Port Extenders that connect to lower level Port 

Extenders within a cascade, or to other devices 

outside of the logical switch, are referred to as 

downlink ports. In a cascade of Port 

Extenders, the downlink ports of Port 

Extenders in one layer of the cascade connect 

to the uplink ports of the Port Extenders in the 

next lower layer of the cascade. Thus, the 

topology formed by a cascade of Port 

Extenders is a loop-free tree.  

Figure 2 illustrates the logical network that 

is achieved by the physical network illustrated 

in figure 1. 

As previously mentioned, to the greatest 

extent possible, all switching functions are 

performed in the Controlling Switch. 

However, many of these functions are port 

based, that is, they require knowledge of the 

ingress port or require an explicit indication of 

the egress port. To convey this knowledge, an 

additional tag is added to the frame much like 

a VLAN tag. In addition, each Port Extender 

Port is assigned a 12-bit Port Extender Port ID 

(PepID) by the Controlling Switch (this occurs 

upon port creation in the case of ports 

connected to virtual machines).  Finally, to 
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facilitate flooding, multicast, and broadcast, 

each Port Extender may be programmed with 

multiple port lists by the Controlling Bridge.  

A Port Extender Port List ID (PepLID) 

identifies each Port list. 
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The assigned PepIDs of all Port Extender 

ports accessible through a given Controlling 

Switch port must be unique. PepIDs are 

qualified by the Switch port through which 

they are accessed; therefore, PepIDs of Port 

Extender ports accessible through independent 

switch ports are not required to be unique. 

V. CONTROLLING SWITCH AND PORT 

EXTENDER ARCHITECTURE 

Figure 3 illustrates the architecture typical 

of many Switches deployed in data centers. 

These Switches consist of line cards that 

provide the individual ports and a crossbar 

function that provides the relay of frames 

between line cards. 

When a frame enters such a switch, an 

indication identifying the ingress port is passed 

along with the frame to the memory controller 

and frame processing functions.  

The frame processing functions utilize the 

indication of the ingress port along with 

various fields in the frame headers to perform 

the necessary processing to determine to which 

port or ports the frame should be relayed. This 

processing may include functions such as 

validation of the frame’s VLAN, verification 

that the frame passes the requirements 

imposed by access control lists for the ingress 

port, and look up of the frame’s MAC address 

and the VLAN identifier within the switch’s 

filtering database. In addition, learning 

functions are performed to associate the 

frame’s source MAC address and the VLAN 

identifier with the ingress port. 

After determination of the egress port (or 

ports) is made, an indication of the egress port 

is associated with the frame data.  The frame is 

then scheduled for transmission through the 

crossbar function.  The actual scheduling 

algorithm used may be based on a wide variety 

of factors but frequently includes the ingress 

and egress port indications. 

At the appropriate time, the frame, along 

with its ingress and egress port indications, is 

transmitted to the crossbar function.  The 

crossbar forwards the frame to the line card 

containing the port specified in the egress port 

indication. 

The egress line card and port performs 

additional frame processing.  This may include 

egress access control list processing, egress 

VLAN processing, and the addition and 

removal of tags.  The frame may then be 

scheduled for transmission from the port 

specified in the egress port indication. 

Figure 4 illustrates the same switch 

architecture with the addition of Port 

Extenders in both the ingress and egress paths.  

The key point to note is that no change to the 

fundamental switch architecture is required to 

support the Port Extenders. 

In this case, the frame enters the Port 

Extender and a STag is added to the frame.  



The format of the STag is defined in IEEE 

802.1ad [1].  The STag format is very similar 

to that of a QTag.  It contains a three-bit 

Priority Code Point indication, a Drop Eligible 

Indicator bit, and a 12-bit “Service VLAN ID” 

(SVID).  The priority field is simply copied 

from the frame’s QTag, or set to the Port 

Extender’s port default priority if a QTag is 

not present.  The Drop Eligible Indicator bit is 

set or reset based on a static programming of 

QTag priority.  The SVID is set to the PepID 

of the ingress port.   

After the frame is tagged with a STag, the 

Port Extender forwards the frame to its uplink 

port.  Only the first Port Extender on an 

ingress path adds the STag; successive Port 

Extenders forward the frame toward the 

Controlling Switch. 

Upon ingress into the Controlling Switch, 

the Port Extender ingress port PepID is 

combined with the indication of the 

Controlling Switch ingress port.  This 

combined value is then used for all ingress 

port identification in the switch frame 

processing functions.  In particular, the 

learning function learns the combination of the 

ingress Port Extender PepID and the 

Controlling Switch ingress port indication. 

The frame processing functions determine 

an egress port.  However, in this example the 

egress port is a port on a Port Extender.  

Therefore, the egress port indication returned 

by the frame processing function contains the 

combination of an indication of the 

Controlling Switch egress port and the Port 

Extender egress port PepID.  This combination 

is used as the egress port indication for all 

frame processing functions within the 

Controlling Switch.   

Upon transmission from the Controlling 

Switch, the STag is updated with the Port 

Extender egress port PepID. Each Port 

Extender contains a forwarding table that is 

indexed by PepID that is programmed by the 

Controlling Switch.  Each entry in the table 

contains the physical port index through which 

a frame with the corresponding PepID is to be 

transmitted. 

On egress, the frame transits through one or 

more Port Extenders.  At each Port Extender, 

the PepID is used as an index into the 

forwarding table and the egress Port Extender 

port is obtained.  The frame is then transmitted 

from that port.  The last Port Extender 

removes the STag. 

To support multicast and frame flooding, 

each Port Extender contains a Port Extender 

Port List table.  Each entry in the table 

indicates a unique group of ports to which a 

frame on egress is to be replicated.  If the 

Controlling Switch determines that the frame 

is to be flooded, contains a group MAC 

address, or needs to be forwarded to multiple 

ports for other reasons, the Controlling Switch 

replaces the STag with a new tag called an 

“MTag”. Like the STag, the MTag contains a 

Priority Code Point field and Drop Eligible 

Indicator bit.  These values are simply copied 

from the STag.  In addition, the MTag contains 

a PepLID field and a source PepID.  The 

source PepID is also copied from the STag of 

the original frame.   To cause the frames to be 

forwarded to the proper ports, the Controlling 

Switch populates the PepLID field with the 

appropriate value.  The frame is then 

forwarded to the appropriate Port Extender.  

Each Port Extender along the egress path 

forwards the frame to the ports indicated in the 

port list pointed to by the PepLID.  The final 

Port Extenders remove the MTag.  In addition, 

the final Port Extenders check the source 

PepID in the MTag and discard the frame if it 

matches that of the egress port.  This prevents 

a frame from being forwarded on the port from 

which it was received. 
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VI. DATA CENTER NETWORK DESIGN 

HIERARCHY 

The design of modern data center networks 

is based on a proven layered approach, which 

has been tested and improved over the past 

several years in some of the largest data center 

implementations in the world. The three layers 

of a data center network are: 

● Core layer, the high-speed packet 

switching backplane for all flows going in and 

out of the data center. 

● Aggregation layer, providing important 

functions such as the integration of network-

hosted services: load balancing, intrusion 

detection, firewalls, SSL offload, network 

analysis, and more. 

● Access layer, where the servers 

physically attach to the network and where the 

network policies (access control lists [ACLs], 

quality of service [QoS], VLANs, etc.) are 

enforced. The access-layer network 

infrastructure can be implemented with either 

large, modular switches, typically located at 

the end of each row, providing connectivity for 

each of the servers located within that row (the 

end-of-row model,) or smaller, fixed 

configuration top-of-rack switches that provide 

connectivity to one or a few adjacent racks and 

have uplinks to the aggregation-layer devices 

(the top-of-rack model.) Bladed server 

architectures modify the access layer by 

allowing an optional embedded blade switch to 

be located within the blade enclosure. Blade 

switches, which are functionally similar to 

access-layer switches, are topologically 

located at the access layer; however, they are 

often deployed as an additional layer of the 

network between access-layer switches and 

computing nodes (blades), thus introducing a 

fourth layer in the network design [2]. 

Sever virtualization technologies logically 

divide a single server (or blade) into multiple 

servers.  To achieve this, a switch 

(implemented in software, hardware, or a 

combination of both embedded within the 

server) provides connectivity to each virtual 

machine.  Thus, a fifth layer is added to the 

network architecture that is effectively a third 

sub-layer of the access layer.  

This architecture results in an extensive 

proliferation of switches that are providing 

little service other than the simple forwarding 

of frames between uplinks and downlinks.  Yet 

these are full function switches and each must 

be fully managed (if only to disable much of 

the switch functionality).  This creates an 

excessive management and capital expenditure 

burden with marginal return. 

However, the functionality provided by a 

Port Extender is exactly the functionality 

required in these switches, i.e. the ability to 

forward traffic between uplinks and 

downlinks.  Thus, these switches may be 

replaced by Port Extenders effectively 

collapsing the switch hierarchy into the next 

higher-level switch.  As a result, the number of 

switches that are required to be deployed and 

managed is dramatically reduced. 

Additionally, the capability of such a 

collapsed network is frequently much greater.  

In a traditional network design, the switches 

located near the edge of the network are those 

that face the greatest cost pressure.  This is 

understandable given that they occur in the 

greatest quantity.  Yet this is precisely where 

the most advanced functionality is required.  

Conversely, the switches that are located away 

from the edge tend to be fewer in number, and 

therefore the cost pressures are not as great.  

Thus, these switches tend to provide much 

greater capability.  Ironically, these switches 

are not optimally located to provide the 

advanced functionality. 

Port Extenders correct this “capability 

inversion”.  By replacing switches at the edge 

of the network with Port Extenders, the higher 

layer more capable switches effectively 

become the edge switches.  As a result, their 

advanced capabilities may be fully deployed at 



the edge where they are most needed and 

effective. 

VII. PORT EXTENSION AND VIRTUALIZATION 

Port Extension provides unique benefits in 

server virtualization environments in addition 

to the benefits provided in traditional data 

center networks. 

A key capability of server virtualization is 

the ability to move an active virtual server 

from one physical machine to another (referred 

to as virtual machine migration).  This 

capability is commonly provided by 

virtualization software. 

The network complicates the migration 

process.  Each virtual machine requires certain 

characteristics of the switch port that connects 

it to the fabric.  This could include parameters 

such as flow control, congestion notification, 

VLAN assignment, access control lists, etc.  

This collection of parameters is commonly 

referred to as the virtual machine’s “port 

profile”. 

There is no standard process for 

transferring a port profile from one switch to 

another in synchronization with the migration 

of a virtual machine.  Virtual machine 

migration often involves a manual step of pre-

provisioning the switch port within the target 

physical server.  Thus, the efficiency of the 

migration is negatively impacted. 

If the migration is to take place between 

two ports of a given switch, it is quite trivial 

for the switch to simultaneously transfer the 

port profile.  Immediately after a migration, a 

virtual machine typically broadcasts a frame to 

“announce” its new location and to allow 

switches in the network to update their 

filtering databases (a RARP frame is typically 

used for this purpose).  Since the virtual 

machine has moved to a new port on the same 

switch, upon reception of the announcement 

frame, the switch may simply move the port 

profile from the old switch port to the new 

one.  Since no coordination is required 

between switches, no standard protocols or 

procedures are required. 

Unfortunately, virtual machines in today’s 

data centers nearly never migrate between 

ports on a given physical server.  Recall that 

each physical server contains its own 

embedded switch.  It rarely makes sense to 

migrate a virtual machine within a given 

server (such a migration is essentially 

meaningless).  Thus, migrations are nearly 

always between physical servers, and by 

definition, between switches. 

However, if the switch embedded within 

each physical server is replaced by a Port 

Extender, and these Port Extenders are 

connected to a common Controlling Switch, 

then all of the virtual machines within all of 

the virtual servers are, in effect, connected by 

a single switch.  As a result, migration 

between the physical servers is enabled 

without manual pre-provisioning of the port 

profiles. 

VIII. SUMMARY 

Because of high-density server technology, 

modern data centers are experiencing a 

dramatic increase in the number of deployed 

switches.  This results in increased capital 

expenditure and management costs while 

stretching the scalability limits of the 

management applications.  Many of these 

switches perform little frame relay other than 

between adjacent layers in the network 

architecture.  Port Extension allows these 

switches to be removed from the network 

resulting in significantly fewer switches being 

acquired and managed.  In addition, port 

extension extends the reach of the more 

capable higher layer switches to the edge of 

the network allowing these capabilities to be 

more effectively utilized.  Finally, port 

extension enhances the efficiency of virtual 

machine migration by eliminating the need for 

manual pre-provisioning of network port 

resources and configuration. 
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