
Introduction to Port Extension

Joe Pelissier

Cisco Systems

3 West Plumeria Drive

San Jose, CA 95134

+1.503.628.0801

jopeliss@cisco.com

Abstract – Data centers today are

experiencing a rapid proliferation of switches

as a direct result of the deployment of high-

density server platforms. Given the layered

switching architecture found in today’s data

centers, many of the switches are performing

a simple aggregation function; that is, the

majority of traffic is moving between

downlinks and uplinks. However, despite this

simple function, these switches contribute to

a significant portion of the capital

expenditure and ongoing administrative and

management costs of the data center. This

paper proposes a new technology that

replaces these aggregating switches with a

device that extends the ports of the switch in

the next higher layer. This technology has the

potential to reduce significantly the number

of switches that must be managed in the data

center as well as reduce the upfront capital

expenditure costs.

I. INTRODUCTION AND MOTIVATION

Data centers today are experiencing a

dramatic increase in the number of installed

Ethernet switches as a direct result of the

deployment of high-density servers and blade

servers. In addition, deployment of

virtualization technology within servers has

resulted in an even further increase in the

number of installed switches. These switches

are typically embedded within the actual

server itself. It is important to note, however,

that virtualization is not the sole source of this

explosion in switch proliferation, but it has

added significantly to this phenomenon.

The growth in switch deployment has

resulted in the corresponding growth of

associated costs.

It may also be observed that many of these

switches serve little function other than to act

as aggregation points within the network. They

frequently perform minimal frame relay

outside of the simple passing of frames

between uplinks and downlinks. In effect,

these switches are simply acting as additional

ports for higher-level switches. Despite the

fact that these switches are performing a

relatively simple function, they account for

much of the initial capital expenditure and

ongoing management and administrative costs.

To address these costs, a new technology

has been proposed referred to as “Port

Extension”. The Port Extension technology

introduces a new device called a “Port

Extender” that effectively acts as additional

ports for the switch to which it is connected.

The switch to which the Port Extender is

connected is referred to as the “Controlling

Switch”. The Controlling Switch and a set of

Port Extenders connected to it form a single

logical switch. Port Extenders are not

individually managed but instead are managed

as part of the combined switch entity. To the

extent possible, all switching functions are

performed in the Controlling Switch. This

keeps the functionality of Port Extender

limited and therefore the cost low. This also

helps to keep the functionality of the

Controlling Switch consistent across all ports

realized using Port Extenders.

II. PROBLEM STATEMENT

The deployment of hundreds to thousands

of switch devices with varying capabilities and

performance as a result of high-density server

technology (including but not limited to server

virtualization) creates the following challenges

that are addressed by the technology proposed

by Port Extension:

• High network management complexity and

administrative cost

• High initial capital expenditures

• Stressed scalability limits and

responsiveness of network applications

due to:

o Quantity of points of management

o Quantity of management messages

required for each point

o Latency in response to each

management message

• Lack of visibility of internally switched

frames

• Server and network management

conflicts

III. REQUIREMENTS

It was considered extremely important that

the Port Extension technology provides

exactly the same externally observable

behavior of that provided by switches

deployed in networks today. This is

fundamental to ensuring interoperability.

Deviating from such behavior opens the door

for many unforeseen consequences.

Furthermore, any requirement that an

application or device be aware it is connected

to a switch using Port Extension technology

was seen as a significant barrier to acceptance

and therefore highly undesirable.

It was also considered highly desirable to

drive complexity towards the Controlling

Switch and out of the Port Extenders. This

complexity would include functions such as

address lookups, learning and aging functions,

VLAN functions, and access control list

processing. The most obvious reason for this

requirement is to reduce overall cost. Since

Port Extenders will outnumber Controlling

Switches, it clearly makes sense to focus on

reducing the cost of the Port Extenders.

Equally important, however, is the fact that

simplifying the Port Extender results in greater

data center design and dynamic

reconfiguration flexibility by reducing

inconsistency of functionality of the network

infrastructure.

It is also required that the ports instantiated

by Port Extenders operate with any device that

could normally be connected to a standard

switch port. This includes other switches, end

stations, and other Port Extenders. In other

words, the ports provided by Port Extenders

must operate as any other port that is part of

the Controlling Switch.

Additionally, maintaining simplicity in the

Port Extenders is a requirement to provide

simple and efficient management capabilities.

As a Controlling Switch becomes a single

point of management for itself and all attached

Port Extenders, the total number of points of

management in the network is substantially

reduced. More importantly, by keeping the

majority of the functionality in the Controlling

Switch, few management operations require

the Controlling Switch to initiate additional

protocol operations with the Port Extenders.

For example, configuration of an ACL on a

group of ports affects only the Controlling

Switch and not the associated Port Extenders.

Thus, the total number of management

messages required and the latency of each of

these messages is significantly reduced.

Finally, to promote and simplify the

development of Controlling Switches, Port

Extension technology is designed to operate

using the fundamental architecture common in

existing switches today.

IV. AN APPROACH

Port Extension technology proposes to meet

the previously stated requirements by

providing the capability to combine distributed

network components into a single logical

802.1Q compliant switch. These components

consist of:

• A Controlling Switch

• Distributed Port Extenders (that may be

cascaded)

• A protocol enabling control of the Port

Extenders by the Controlling Switch

Figure 1 illustrates a network utilizing Port

Extension technology.

The top switch in this figure represents the

Controlling Switch. One of the ports on this

switch is connected to a Port Extender. The

Port Extender port that is connected to a

Controlling Switch, or to a higher level Port

Extender within a cascade, is referred to as an

uplink port. This Port Extender is connected to

four additional devices below it. Two of these

devices are additional Port Extenders. The

other two devices are conventional switches.

The Controlling Switch and the three Port

Extenders shown in this figure combine to

form a single logical switch. The ports of the

Port Extenders that connect to lower level Port

Extenders within a cascade, or to other devices

outside of the logical switch, are referred to as

downlink ports. In a cascade of Port

Extenders, the downlink ports of Port

Extenders in one layer of the cascade connect

to the uplink ports of the Port Extenders in the

next lower layer of the cascade. Thus, the

topology formed by a cascade of Port

Extenders is a loop-free tree.

Figure 2 illustrates the logical network that

is achieved by the physical network illustrated

in figure 1.

As previously mentioned, to the greatest

extent possible, all switching functions are

performed in the Controlling Switch.

However, many of these functions are port

based, that is, they require knowledge of the

ingress port or require an explicit indication of

the egress port. To convey this knowledge, an

additional tag is added to the frame much like

a VLAN tag. In addition, each Port Extender

Port is assigned a 12-bit Port Extender Port ID

(PepID) by the Controlling Switch (this occurs

upon port creation in the case of ports

connected to virtual machines). Finally, to

Blade Rack

B
la

d
e

 S
v
r.

B
la

d
e

 S
v
r.

B
la

d
e

 S
v
r.

B
la

d
e

 S
v
r.

PE Uplink Port: may
connect to an PE capable

switch or an PE downlink

Switches that connect to PE
Uplink Ports must be PE

capable (e.g. support STags and

MTags).

PE Downlink Port: may
connect to a PE Uplink

Port, a switch, or a NIC

(virtual or physical).
Note that the switch
does not need to be PE
capable in this case.

PEs may be

cascaded. In this
case, the Downlink

Ports (virtual in this

example) act as ports
of the top level bridge.

Downlink ports are
assigned PepIDs that

corresponds to an

interface on the switch
and is used to route

frames down through
PEs

Figure 1 – Port Extension Anatomy

Blade Rack

B
la

d
e

 S
v
r.

B
la

d
e

 S
v
r.

B
la

d
e

 S
v
r.

B
la

d
e

 S
v
r.

Blade Rack

B
la

d
e

 S
v
r.

B
la

d
e

 S
v
r.

B
la

d
e

 S
v
r.

B
la

d
e

 S
v
r.

PE Uplink Port: may
connect to an PE capable

switch or an PE downlink

Switches that connect to PE
Uplink Ports must be PE

capable (e.g. support STags and

MTags).

PE Downlink Port: may
connect to a PE Uplink

Port, a switch, or a NIC

(virtual or physical).
Note that the switch
does not need to be PE
capable in this case.

PEs may be

cascaded. In this
case, the Downlink

Ports (virtual in this

example) act as ports
of the top level bridge.

Downlink ports are
assigned PepIDs that

corresponds to an

interface on the switch
and is used to route

frames down through
PEs

Figure 1 – Port Extension Anatomy

facilitate flooding, multicast, and broadcast,

each Port Extender may be programmed with

multiple port lists by the Controlling Bridge.

A Port Extender Port List ID (PepLID)

identifies each Port list.

Blade Rack

B
la

d
e
 S

v
r.

B
la

d
e
 S

v
r.

B
la

d
e
 S

v
r.

B
la

d
e
 S

v
r.

Figure 2 – Equivalent Logical

Network

Blade Rack

B
la

d
e
 S

v
r.

B
la

d
e
 S

v
r.

B
la

d
e
 S

v
r.

B
la

d
e
 S

v
r.

Figure 2 – Equivalent Logical

Network

The assigned PepIDs of all Port Extender

ports accessible through a given Controlling

Switch port must be unique. PepIDs are

qualified by the Switch port through which

they are accessed; therefore, PepIDs of Port

Extender ports accessible through independent

switch ports are not required to be unique.

V. CONTROLLING SWITCH AND PORT

EXTENDER ARCHITECTURE

Figure 3 illustrates the architecture typical

of many Switches deployed in data centers.

These Switches consist of line cards that

provide the individual ports and a crossbar

function that provides the relay of frames

between line cards.

When a frame enters such a switch, an

indication identifying the ingress port is passed

along with the frame to the memory controller

and frame processing functions.

The frame processing functions utilize the

indication of the ingress port along with

various fields in the frame headers to perform

the necessary processing to determine to which

port or ports the frame should be relayed. This

processing may include functions such as

validation of the frame’s VLAN, verification

that the frame passes the requirements

imposed by access control lists for the ingress

port, and look up of the frame’s MAC address

and the VLAN identifier within the switch’s

filtering database. In addition, learning

functions are performed to associate the

frame’s source MAC address and the VLAN

identifier with the ingress port.

After determination of the egress port (or

ports) is made, an indication of the egress port

is associated with the frame data. The frame is

then scheduled for transmission through the

crossbar function. The actual scheduling

algorithm used may be based on a wide variety

of factors but frequently includes the ingress

and egress port indications.

At the appropriate time, the frame, along

with its ingress and egress port indications, is

transmitted to the crossbar function. The

crossbar forwards the frame to the line card

containing the port specified in the egress port

indication.

The egress line card and port performs

additional frame processing. This may include

egress access control list processing, egress

VLAN processing, and the addition and

removal of tags. The frame may then be

scheduled for transmission from the port

specified in the egress port indication.

Figure 4 illustrates the same switch

architecture with the addition of Port

Extenders in both the ingress and egress paths.

The key point to note is that no change to the

fundamental switch architecture is required to

support the Port Extenders.

In this case, the frame enters the Port

Extender and a STag is added to the frame.

The format of the STag is defined in IEEE

802.1ad [1]. The STag format is very similar

to that of a QTag. It contains a three-bit

Priority Code Point indication, a Drop Eligible

Indicator bit, and a 12-bit “Service VLAN ID”

(SVID). The priority field is simply copied

from the frame’s QTag, or set to the Port

Extender’s port default priority if a QTag is

not present. The Drop Eligible Indicator bit is

set or reset based on a static programming of

QTag priority. The SVID is set to the PepID

of the ingress port.

After the frame is tagged with a STag, the

Port Extender forwards the frame to its uplink

port. Only the first Port Extender on an

ingress path adds the STag; successive Port

Extenders forward the frame toward the

Controlling Switch.

Upon ingress into the Controlling Switch,

the Port Extender ingress port PepID is

combined with the indication of the

Controlling Switch ingress port. This

combined value is then used for all ingress

port identification in the switch frame

processing functions. In particular, the

learning function learns the combination of the

ingress Port Extender PepID and the

Controlling Switch ingress port indication.

The frame processing functions determine

an egress port. However, in this example the

egress port is a port on a Port Extender.

Therefore, the egress port indication returned

by the frame processing function contains the

combination of an indication of the

Controlling Switch egress port and the Port

Extender egress port PepID. This combination

is used as the egress port indication for all

frame processing functions within the

Controlling Switch.

Upon transmission from the Controlling

Switch, the STag is updated with the Port

Extender egress port PepID. Each Port

Extender contains a forwarding table that is

indexed by PepID that is programmed by the

Controlling Switch. Each entry in the table

contains the physical port index through which

a frame with the corresponding PepID is to be

transmitted.

On egress, the frame transits through one or

more Port Extenders. At each Port Extender,

the PepID is used as an index into the

forwarding table and the egress Port Extender

port is obtained. The frame is then transmitted

from that port. The last Port Extender

removes the STag.

To support multicast and frame flooding,

each Port Extender contains a Port Extender

Port List table. Each entry in the table

indicates a unique group of ports to which a

frame on egress is to be replicated. If the

Controlling Switch determines that the frame

is to be flooded, contains a group MAC

address, or needs to be forwarded to multiple

ports for other reasons, the Controlling Switch

replaces the STag with a new tag called an

“MTag”. Like the STag, the MTag contains a

Priority Code Point field and Drop Eligible

Indicator bit. These values are simply copied

from the STag. In addition, the MTag contains

a PepLID field and a source PepID. The

source PepID is also copied from the STag of

the original frame. To cause the frames to be

forwarded to the proper ports, the Controlling

Switch populates the PepLID field with the

appropriate value. The frame is then

forwarded to the appropriate Port Extender.

Each Port Extender along the egress path

forwards the frame to the ports indicated in the

port list pointed to by the PepLID. The final

Port Extenders remove the MTag. In addition,

the final Port Extenders check the source

PepID in the MTag and discard the frame if it

matches that of the egress port. This prevents

a frame from being forwarded on the port from

which it was received.

Ingress Side of
Line Card

Frame
Processor

Memory
Control

VOQs

Crossbar Egress Side of
Line Card

Frame

Egress
Processing

Port
4

Port
8

Frame enters here,

smac=abc, dmac=xyz,
vlan=123.

Internal tag
added,
sport=4

Frame processor performs several
operations in parallel:

- smac, vlan, sport learned
- Ingress VLAN verified to be part of
member set for sport

-Ingress ACLs processed based on
sport and frame header

- dmac, vlan lookup performed to
determine dport=8

- internal tag updated with dport

Crossbar forwards

frame based on dport

-Egress ACL processed
based on sport, dport,
& frame contents

-Frame rewrite takes place (IP
related, add / delete QTag, etc.)

-Frame transmitted on port 8 based
on dport

Figure 3 – Typical Switch Architecture

Ingress Side of
Line Card

Frame
Processor

Memory
Control

VOQs

Crossbar Egress Side of
Line Card

Frame

Egress
Processing

Port
4

Port
8

Frame enters here,

smac=abc, dmac=xyz,
vlan=123.

Internal tag
added,
sport=4

Frame processor performs several
operations in parallel:

- smac, vlan, sport learned
- Ingress VLAN verified to be part of
member set for sport

-Ingress ACLs processed based on
sport and frame header

- dmac, vlan lookup performed to
determine dport=8

- internal tag updated with dport

Crossbar forwards

frame based on dport

-Egress ACL processed
based on sport, dport,
& frame contents

-Frame rewrite takes place (IP
related, add / delete QTag, etc.)

-Frame transmitted on port 8 based
on dport

Figure 3 – Typical Switch Architecture

Ingress Side of
Line Card

Frame
Processor

Memory

Control

VOQs

Crossbar Egress Side of
Line Card

Frame
Egress

Processing

Ingress
Path PE

Ingress
Path PE

Ingress

Path PE

Egress

Path PE

Egress

Path PE

Egress

Path PE

PepID

22

Port

4

Port

8

PepID

47

Frame enters here,

smac=abc, dmac=xyz,

vlan=123.

PE adds STag,

SVID = 22

PE forwards

frame

unmodified

Internal tag

added,

sport.sPepID=4.22

Frame processor performs several

operations in parallel:

- smac,vlan, sport.sPepID learned

- Ingress VLAN verified to be part of

member set for sport.sPepID

-Ingress ACLs processed based on

sport.sPepID and frame header

- dmac, vlan lookup performed to

determine dport.dPepID=8.47

- internal tag updated with dport.dPepID

Crossbar forwards

frame based on dport

-Egress ACL processed

based on sport.sPepID, dport.dPepID,

& frame contents

-Frame rewrite takes place (IP

related, add / delete QTag, STag,

etc.)

-Frame transmitted on port 8 based

on dport

Frame forwarded

to next hop PE

based on

PepID=47

Frame forwarded

to egress PE port

based on

PepID=47, STag

removed

Figure 4 – Typical Port Extension Capable Switch Architecture

Ingress Side of
Line Card

Frame
Processor

Memory

Control

VOQs

Crossbar Egress Side of
Line Card

Frame
Egress

Processing

Ingress
Path PE
Ingress
Path PE

Ingress
Path PE

Ingress

Path PE

Egress

Path PE

Egress

Path PE

Egress

Path PE

Egress

Path PE

PepID

22

Port

4

Port

8

PepID

47

Frame enters here,

smac=abc, dmac=xyz,

vlan=123.

PE adds STag,

SVID = 22

PE forwards

frame

unmodified

Internal tag

added,

sport.sPepID=4.22

Frame processor performs several

operations in parallel:

- smac,vlan, sport.sPepID learned

- Ingress VLAN verified to be part of

member set for sport.sPepID

-Ingress ACLs processed based on

sport.sPepID and frame header

- dmac, vlan lookup performed to

determine dport.dPepID=8.47

- internal tag updated with dport.dPepID

Crossbar forwards

frame based on dport

-Egress ACL processed

based on sport.sPepID, dport.dPepID,

& frame contents

-Frame rewrite takes place (IP

related, add / delete QTag, STag,

etc.)

-Frame transmitted on port 8 based

on dport

Frame forwarded

to next hop PE

based on

PepID=47

Frame forwarded

to egress PE port

based on

PepID=47, STag

removed

Figure 4 – Typical Port Extension Capable Switch Architecture

VI. DATA CENTER NETWORK DESIGN

HIERARCHY

The design of modern data center networks

is based on a proven layered approach, which

has been tested and improved over the past

several years in some of the largest data center

implementations in the world. The three layers

of a data center network are:

● Core layer, the high-speed packet

switching backplane for all flows going in and

out of the data center.

● Aggregation layer, providing important

functions such as the integration of network-

hosted services: load balancing, intrusion

detection, firewalls, SSL offload, network

analysis, and more.

● Access layer, where the servers

physically attach to the network and where the

network policies (access control lists [ACLs],

quality of service [QoS], VLANs, etc.) are

enforced. The access-layer network

infrastructure can be implemented with either

large, modular switches, typically located at

the end of each row, providing connectivity for

each of the servers located within that row (the

end-of-row model,) or smaller, fixed

configuration top-of-rack switches that provide

connectivity to one or a few adjacent racks and

have uplinks to the aggregation-layer devices

(the top-of-rack model.) Bladed server

architectures modify the access layer by

allowing an optional embedded blade switch to

be located within the blade enclosure. Blade

switches, which are functionally similar to

access-layer switches, are topologically

located at the access layer; however, they are

often deployed as an additional layer of the

network between access-layer switches and

computing nodes (blades), thus introducing a

fourth layer in the network design [2].

Sever virtualization technologies logically

divide a single server (or blade) into multiple

servers. To achieve this, a switch

(implemented in software, hardware, or a

combination of both embedded within the

server) provides connectivity to each virtual

machine. Thus, a fifth layer is added to the

network architecture that is effectively a third

sub-layer of the access layer.

This architecture results in an extensive

proliferation of switches that are providing

little service other than the simple forwarding

of frames between uplinks and downlinks. Yet

these are full function switches and each must

be fully managed (if only to disable much of

the switch functionality). This creates an

excessive management and capital expenditure

burden with marginal return.

However, the functionality provided by a

Port Extender is exactly the functionality

required in these switches, i.e. the ability to

forward traffic between uplinks and

downlinks. Thus, these switches may be

replaced by Port Extenders effectively

collapsing the switch hierarchy into the next

higher-level switch. As a result, the number of

switches that are required to be deployed and

managed is dramatically reduced.

Additionally, the capability of such a

collapsed network is frequently much greater.

In a traditional network design, the switches

located near the edge of the network are those

that face the greatest cost pressure. This is

understandable given that they occur in the

greatest quantity. Yet this is precisely where

the most advanced functionality is required.

Conversely, the switches that are located away

from the edge tend to be fewer in number, and

therefore the cost pressures are not as great.

Thus, these switches tend to provide much

greater capability. Ironically, these switches

are not optimally located to provide the

advanced functionality.

Port Extenders correct this “capability

inversion”. By replacing switches at the edge

of the network with Port Extenders, the higher

layer more capable switches effectively

become the edge switches. As a result, their

advanced capabilities may be fully deployed at

the edge where they are most needed and

effective.

VII. PORT EXTENSION AND VIRTUALIZATION

Port Extension provides unique benefits in

server virtualization environments in addition

to the benefits provided in traditional data

center networks.

A key capability of server virtualization is

the ability to move an active virtual server

from one physical machine to another (referred

to as virtual machine migration). This

capability is commonly provided by

virtualization software.

The network complicates the migration

process. Each virtual machine requires certain

characteristics of the switch port that connects

it to the fabric. This could include parameters

such as flow control, congestion notification,

VLAN assignment, access control lists, etc.

This collection of parameters is commonly

referred to as the virtual machine’s “port

profile”.

There is no standard process for

transferring a port profile from one switch to

another in synchronization with the migration

of a virtual machine. Virtual machine

migration often involves a manual step of pre-

provisioning the switch port within the target

physical server. Thus, the efficiency of the

migration is negatively impacted.

If the migration is to take place between

two ports of a given switch, it is quite trivial

for the switch to simultaneously transfer the

port profile. Immediately after a migration, a

virtual machine typically broadcasts a frame to

“announce” its new location and to allow

switches in the network to update their

filtering databases (a RARP frame is typically

used for this purpose). Since the virtual

machine has moved to a new port on the same

switch, upon reception of the announcement

frame, the switch may simply move the port

profile from the old switch port to the new

one. Since no coordination is required

between switches, no standard protocols or

procedures are required.

Unfortunately, virtual machines in today’s

data centers nearly never migrate between

ports on a given physical server. Recall that

each physical server contains its own

embedded switch. It rarely makes sense to

migrate a virtual machine within a given

server (such a migration is essentially

meaningless). Thus, migrations are nearly

always between physical servers, and by

definition, between switches.

However, if the switch embedded within

each physical server is replaced by a Port

Extender, and these Port Extenders are

connected to a common Controlling Switch,

then all of the virtual machines within all of

the virtual servers are, in effect, connected by

a single switch. As a result, migration

between the physical servers is enabled

without manual pre-provisioning of the port

profiles.

VIII. SUMMARY

Because of high-density server technology,

modern data centers are experiencing a

dramatic increase in the number of deployed

switches. This results in increased capital

expenditure and management costs while

stretching the scalability limits of the

management applications. Many of these

switches perform little frame relay other than

between adjacent layers in the network

architecture. Port Extension allows these

switches to be removed from the network

resulting in significantly fewer switches being

acquired and managed. In addition, port

extension extends the reach of the more

capable higher layer switches to the edge of

the network allowing these capabilities to be

more effectively utilized. Finally, port

extension enhances the efficiency of virtual

machine migration by eliminating the need for

manual pre-provisioning of network port

resources and configuration.

IX. REFERENCES

[1] IEEE Computer Society, IEEE Std

802.1ad™-2005, IEEE Standard for Local

and metropolitan area networks, Virtual

Bridged Local Area Networks, Amendment 4:

Provider Bridges, 3 Park Avenue, New York,

NY 10016-5997, USA, 26 May 2006.

[2] Cisco Systems, Inc., “Cisco VN-Link:

Virtualization-Aware Networking, A

Technical Primer”, http://www.cisco.com/

en/US/solutions/collateral/ns340/ns517/ns224

/ns892/ns894/white_paper_c11-525307_

ps9670_Products_White_Paper.html, page 1.

