
 1

Benchmarking the Ethernet-Federated Datacenter

M. Gusat, C. DeCusatis, C. Minkenberg,

L. McKenna, K. Bhardwaj

IBM Research, Zurich Research Laboratory

IBM Systems and Technology Group, Poughkeepsie

IBM Tivoli, Australia Development Laboratory

mig@zurich.ibm.com

G. J. Paljak, A. Pataricza, I. Kocsis

Budapest University of Technology

and Economics, Hungary

paljakg@sauron.inf.mit.bme.hu

Abstract— Currently, datacenters (DC) are the largest

closed-loop systems in IT, growing toward multi-million

node Clouds. Benchmarking, optimizing and managing

such large systems is an active area of research and an

open challenge, driven by the trend toward stricter service

level agreements (higher performance) and lower power.

To evolve the DC design and management from today’s

ad-hoc solutions to a rigorous discipline, we argue the

need for benchmarking based on advanced monitoring

and modeling methods. In addition to a positional report

of work in progress—our primary target—here we con-

tribute a three-pronged DC benchmarking proposal. Our

approach combines resource monitoring and workload

characterization with DC performance modeling, both by

simulation and by analytical means. While the monitoring

and transaction tracing module is still at an early stage,

our modeling methods have already been successfully

tested in the two study cases. They build on the recent

progress made in key independent fields: Ethernet DCB

monitoring on L2, ARM-based transaction tracing, large-

scale High-Performance Computing (HPC) simulations,

and analytical modeling of dynamic distributed systems.

Keywords - datacenter, performance, benchmarking, 802,

Ethernet, network, model, load, transaction, trace, ARM

I. INTRODUCTION

Cloud computing is an emerging method of deliver-
ing IT services, in which applications, data, and re-
sources are rapidly provisioned without requiring the
end user to purchase or maintain these resources. In a
cloud-computing datacenter (DC), applications are pro-
vided as standardized offerings to end users over a dy-
namically reconfigurable network. This enables a more
flexible cost and pricing business model, and allows the
DC to deploy new resources and technologies much
faster than with current methods. This, in turn, is driv-
ing significant changes in the way computational re-
sources are used, benchmarked, and optimized.

The traditional DC has taken advantage of the low
cost of computing power to proliferate large quantities
of under-utilized servers, storage, and networking, often
without a clear picture of how the resulting system may
perform. As the DC applications and workloads evolve,
this approach leads to inefficient use of resources and
power. In an effort to address these issues, the modern

DC is moving towards new architectures based on hier-
archical clustering of virtualized servers around a con-
verged message-passing DC network (DCN). An en-
semble of one or more such virtualized DCs is called a
compute cloud. Cloud computing uses scale-out IT
building blocks to improve the cost/performance ratio.

Regarding the networking infrastructure, currently
entailing LAN (Ethernet), StAN (Fibre Channel, FC)
and SAN (InfiniBand Architecture, IBA, or Myrinet) so-
lutions, eventually the DC/Cloud traffic will aggregate
onto a converged DCN fabric, likely based on the 802
datacenter bridging (DCB) Ethernet running at 10–100
Gbit/s. Although the opportunity exists to consolidate
many under-utilized links onto a single, higher-data-rate
fabric, the increase in resource utilization must not be al-
lowed to impact user-perceived application perform-
ance. Recognizing this, many cloud service level agree-
ments (SLAs) enforce stricter limits on transaction la-
tency, jitter, and sustained throughput; these, in turn,
drive requirements for improved scheduling and net-
work congestion control. It remains to be demonstrated
whether a converged network can deliver best-of-breed
performance if compared with a dedicated, single-
purpose network. Furthermore, some new Ethernet-
federated DCN fabrics offer significant scale-out capa-
bilities by using virtual chassis backplanes. This has the
potential to scale converged fabrics to port counts sig-
nificantly higher than anything currently deployed. New
benchmarking methodologies will be required to design,
optimize, and manage these fabrics.

While performance optimization on a component
level for individual servers is well developed, it is defi-
nitely less mature on an integrated systemic level. Cloud
computing is more conducive to system-level analysis
than its predecessors, and thus requires a new approach
to DC benchmarking. The workloads are heterogeneous,
asynchronous, and not well understood at the DCN
level; furthermore, cloud-computing DCs incorporate a
mixture of mainframes and other types of servers. Tra-
ditional component-level benchmarks include the SPEC
benchmarks often used for CPU and cache profiling
[38], or network component benchmarks, such as [39],
often for examining NICs and network protocols. Other
efforts such as TPC-W benchmarks for On-Line Trans-
action Processing (OLTP) [30], although intend to meas-

 2

ure a complex systems’ overall performance, must by
necessity often focus on only a few main components:
web service engines [34], message-oriented middleware
[35], the Java

TM
 Virtual Machine [36] or storage systems

[37]. While these approaches remain relevant, they may
no longer correlate to the overall cloud DC and DCN
system performance. An emerging new class of holistic
DC benchmarking that is application- and network-
centric must include global knowledge of the current DC
workloads and their traffic patterns. Many of these re-
main unknown today and must be discovered through
extensive instrumentation, monitoring, and modeling.
Ideally, the resulting benchmarking approach will accu-
rately characterize the DC workload and performance,
will scale beyond the 1M-node Cloud and run with low
overhead.

In this paper, we study the effect of DC resource
configuration on the overall performance. We address
the problem of DC-level qualitative and quantitative
performance evaluations, in order to both maximize per-
formance—which may be constrained by SLAs—and
minimize costs, including energy consumption. These
(conflicting) objectives translate into optimizing a dis-
tributed system by making it adapt to dynamically
changing setpoints and operating conditions, while re-
ducing power and over-provisioning.

The paper is organized as follows: In section II, DC
monitoring is introduced. First, in section II.A we de-
construct a typical DC to understand the system struc-
ture, the distributed resource topology imposed by the
interconnection network graph, and finally the workload
mapping. Next, in section II.B we investigate the chal-
lenge of projecting business transactions to infrastruc-
ture-level flows, focusing on transaction tracing. This
section is intended as a tutorial and field review of the
most recent related work. The monitoring part combines
transaction tracing with analytics to correlate events, ex-
tract deterministic or statistical transaction features, and
generate equivalent traffic for use in modeling. In sec-
tion III we describe our two established modeling meth-

ods for DC/Cloud performance evaluation, i.e. simula-
tion and analytics. Each method is exemplified with a
case study showing recent results of our proposed
method. We conclude in section IV, also including a
discussion of future work.

II. DATACENTER MONITORING

A. Deconstructing the DC: A Topological View

We examine the effect of the DC structural configu-
ration on the overall performance. To describe the struc-
tural configuration, we introduce a three-pronged frame-
work, depicted in Figure 1. It is expressed on three lev-
els of abstractions by three graphs: (a) The nodes on the
business topology level are services, and edges connect
two nodes if one service uses or relies on the other. (b)
The application level contains all deployed software
components as nodes and their interdependencies as
edges. (c) The infrastructure level is composed of com-
putational and network device nodes; the edges of this
level are the network links. Mapping between the three
graphs exists: in the computing cloud services are
mapped onto their provider applications, and applica-
tions onto infrastructure resources used. To understand a
system, each level and the mapping between the levels
must be understood.

B. Transaction Tracing in DC. Related work.

1) Transactions in datacenters
A transaction is a causal data flow from the entry

point of a request to the exit point of the response, initi-
ated by an actor of the system. A transaction represents
a trajectory in the DC state space. Transactions on each
abstraction level of the DC topology (Figure 1) appear
as ordered paths on the graph. On level a, a transaction
is a service invocation, which may also rely on other
services to serve the response. Inside the service pro-
vider, on the application level (level b); a transaction is a
series of method invocations, generally spanning multi-
ple applications with RPC-style interactions. Finally, a
transaction translates into an ordered set of resource oc-

Figure 1. Abstraction levels of a DC structure

Figure 2. A typical graph of the infrastructure level: DCN fat-tree

topology. Bold: one of the multiple available routing paths e2e

 3

cupancies: a path of network packet flows and computa-
tion times on the infrastructure level, flowing through
multiple servers and the interconnecting DCN of the in-
frastructure topology (level c and Figure 2).

2) Transaction-Tracing Methods. Overview
The task of monitoring, in this case, is to track trans-

actions following the causal path of component-level re-
source occupancies. This provides performance informa-
tion broken down into components and traces that can
later be used for driving the simulation or validating
models.

There are three main types of transaction observation
and reconstruction methodologies: white-, gray-, and
black-box. In a white-box model, all source code is
available and can be freely modified, instrumented;
either application-specific assumptions or globally
unique identifiers (GUIDs) are used in most cases. This
is the case for NetLogger [9] or the Application Re-
sponse Measurement standard (ARM, [29]) where the
application source code is extended with explicit tracing
information. WebMon [28] uses cookies modified for
storing GUIDs that are created by custom JavaScript,
and these are passed to instrumented web and applica-
tion servers. User Programmable Virtualized Networks,
described in [33], provide the developer with the free-
dom to handle network interactions (including tagging
packets with ID), as well as to extend the application
and to modify the typical OS kernels. However, in gen-
eral the application source code is not available, or it is
problematic to modify owing to its complexity or other
reasons. In this case, platform-level instrumentation may
still be feasible, which involves the extension of OS
components, e.g., protocol implementations, middleware
applications or runtime environments, to support tracing.

Next, we look at some gray-box solutions, Magpie
[10] is built on Microsoft

®
 Windows

®
 platform and uses

a built-in event-logging framework for reconstructing
causal paths, whereas for distinguishing between
threads, auxiliary events and application-specific sche-
mas are used (please note that earlier versions of Magpie
used GUIDs). PinPoint [11] uses platform-specific trac-
ers that extend components, such as the web server and
several J2EE containers, to tag transactions with GUIDs
and to preserve the tagging. A similar instrumentation

for the Java Virtual Machine [12] uses agents in the run-
time-environment and inserts trace statements ahead of
the flow control. CORBA interceptors are also used, to-
gether with the ARM standard [31] or focusing on statis-
tical approaches [21]. For CORBA/COM, a method is
introduced that uses automatically generated skeletons
and stubs to handle GUIDs [27]. In [13], ISA level in-
strumentation is used, i.e., a tag mapping is maintained
for every byte of the memory and tags are inserted into
and extracted from Ethernet frames. Whodunit [26] de-
tects transactions communicating through shared mem-
ory, events or RPCs by means of an extensive, but low-
overhead instrumentation. SysProf [25] focuses on pro-
filing transactions, keeping track of resource utilization
using kernel-level instrumentation, but requires addi-
tional supplied knowledge to identify interleaving trans-
actions.

At the other extreme, the most generic case is the
black-box approach, where no previous knowledge on
the components is provided, and only passive monitor-
ing instruments (with practically zero performance im-
pact) are used. The causal-path reconstruction is based
on probability and statistics. In their mathematical over-
view of the problem [15, 16], the authors present two al-
gorithms: harnessing nested sub-transactions (identify-
ing call-pairs and matching the probably nested tuples),
and a convolution method applied on message traces as
time signals. E2Eprof [14] analyses log files and esti-
mates most probable causal paths based on cross corre-
lation. In [17] and [20]. a network-only approach focus-
ing on TCP is introduced; and in [23] the mass charac-
teristics of transactions are analyzed.

3) Our Approach: ARM/ITCAM
We use a grey-box scenario on the concept of ex-

tending middleware components. We take advantage of
middleware applications offering the ability to plug in
additional code modules by extracting attributes about a
transaction and sending that information to a separate
tracking processor. One example of such transaction
tracking is the IBM

®
 Tivoli

®
 Composite Application

Manager (ITCAM) for Transactions; this software is
based on automatic insertion of ARM calls to the control
flow and harnessing native instrumentation of supported
middleware. Transaction tracking uses the techniques of
linking (a single attribute is used to group events) and
stitching (several attributes are combined using a prede-
fined method) to correlate transactions end-to-end (Fig-
ure 3).

The challenge of transaction tracing for further anal-
ysis and trace-driven simulation is two-fold:

Burstk Burs Burstk

IBGaIBGapk

Burs Burs

IBGaIFGa

Figure 4. Transaction consisting of 5 bursts, each having 7-15

Ethernet frames, with an arbitrary burst size and inter-burst gap.

Figure 3. The ARM projection of a transaction on the DC

infrastructure

 4

(i) The lack of a de-facto standard DC communica-
tion protocol similar to the Message Passing Interface
(MPI), typically used for instrumentation tap, in HPC. In
DCs, instead of MPI calls, there are RPC, CORBA,
JDBC, etc. calls, to name just a few. There is a multi-
tude of protocols, some of which are proprietary and so
may be their implementation. Even when one has an in-
strumented version of one or some of these protocols,
generalization is an open issue.

(ii) Observing and rebuilding causal paths (trajecto-
ries) are demanding in a typical DC environment. Trans-
actions span across multiple, different-purpose subsys-
tems and protocols; most of the information exchange is
encrypted which is, by design, against observability.

4) DCN-level Benchmarking Workload and Metrics
The application transactions mapped to the network

layer translate into flits, packets/frames, and flows. A
given workload entails the following components, listed
hierarchically: work, job/transaction, flow, burst, and
packet (frame, flit). Each component is described by two
random variables (e.g. burst size and inter-burst gap),
for which we must choose a distribution based on the
workload characteristics of the specific benchmark (in-
ter-burst/frame gap, Figure 4).

The best established performance metrics at DCN
level are latency (end-to-end (e2e) delay at L7),
throughput, jitter, and, at times, fairness. More recently
[6], argued for the introduction of Flow Completion
Time (FCT) as more representative of the user experi-
ence. FCT is the time interval between the injection of
the first Ethernet frame by the source node and the re-
ception of the last frame at the destination node. One
problem on L2, where DCB is defined in 802, is the
flow definition – which differs from that of a L3/4
(TCP) flow. Hence, the two main challenges of FCT as
a DCN metric are as follows:

1) Sensitivity to distributions renders the choice of
distribution a delicate issue. For example, for Pareto dis-
tributions, FCT loses its relevancy because

FCT = Σ (tinject + tqueue + tflight + tRTX) ≠ Le2e(X),
i.e., the central limit theorem does not apply. Therefore,
each term of the sum (except for tflight) must be analyzed
and reported independently.

2) The presence of priority flow control (PFC) as de-
fined in and required by most DC applications, includ-
ing Fiber Channel over Ethernet (FCoE), requires pre-
cise definition of flow completion and rigorous account-
ing in the simulation statistics of: (1) flows received en-
tirely without any loss; (2) flows received entirely with
some loss; (3) flows received partially, and (4) flows not
yet having arrived at destination.

As none of these above issues has been practically
solved (for a solution see [1]), although FCT has been
proposed as a DCN benchmarking metric, it was not
pursued in 802 DCB. Hence, the metrics used most in
DCs are latency and throughput (primary), and power,
fairness and jitter (secondary). Although power is ex-
pected to become a primary metric, we currently cannot
properly monitor and aggregate all power statistics into
a meaningful metric, such as [TPS/Watt]. Another open
issue is how to homogenize the L7/application met-
rics—e.g. TPS and response time—with the L2 DCN
metrics, where throughput and latency represent aggre-
gate statistics. The translation between application and
DCN (L7:L2) metrics is the role of “integrated” metrics
conversion—a problem yet to be solved.

The DCN-specific benchmarks used here can be
based either on traces or on synthetic traffic generators.
For the former case, the trace format includes {(1)
TimeStamp | (2) SRC | (3) DST | (4) Prio | (5) BSize}; in
addition, field (1) is further extended with the GlobalID
from transaction-tracking. The latter case of synthetic
generators is more elaborate [1], evolving along three
axes as in Figure 5.

III. DATACENTER MODELING

A. Simulation Modeling

Our approach for modeling is based on structural in-
formation (i.e. topology graphs) about the system and

Figure 5. DCN Benchmarking axes. Topology is decided by the DC

architect and the DCN vendor; Metrics are imposed by the SLAs;

Traffic Distributions depend on the DC workload characteristics.

Figure 6. VENUS simulation platform.

 5

the concept of transactions being ordered paths on to-
pology graphs. The main requirements of a suitable
simulation environment are architectural accuracy (all
relevant DC details being captured), scalability to full
DCN size. and execution speed. We draw from our ex-
periences in modeling HPC systems, where the two
main simulation methods are “Monte Carlo” and trace-
driven.

In a “Monte Carlo” type simulation synthetically
generated workloads, based on predetermined probabil-
istic distributions, drive accurate functional models. In a
trace-driven simulation, computing nodes are repre-
sented by a trace that contains two basic kinds of re-
cords, namely computation and communication, rather
than by an exact model of their behavior. Computations
are not actually performed, but represented by the
amount of CPU time they would consume in reality.
Communications are transformed into data messages
that are fed to a model of the DCN. To ensure accurate
results, the simulation should preserve causal dependen-
cies between records, e.g., when a particular computa-
tion depends on data to be delivered by a preceding
communication, the start of the computation must wait
for the communication to complete.

As many HPC applications are based on MPI, trac-
ing MPI calls is a suitable method to characterize the
communication patterns of HPC workloads.

An example of this approach is the MARS simulator
presented in [18]. Here we give a brief overview of its
successor, the VENUS-Dimemas HPC tracing and simu-
lation environment, depicted in Figure 6. This is a co-
simulation environment in which Venus is responsible
for detailed simulation of the network and Dimemas for
replaying application traces, i.e., simulating computation
nodes. Paraver processes the simulation output and pro-
vides a graphical representation of the state of MPI
threads and of the communication between them and
network devices. The state of an MPI thread is an activ-
ity (idle, running, waiting, etc.) and the buffer-filling
level of the network level. The inputs for the simulation
environment are the following: (a) network topology de-
scriptor; (b) a route descriptor for explicit definitions of
routes between any two hosts; (c) network device mod-
els (representing Myrinet DCN hardware in this case),

and (d) MPI application run traces and task mappings.
For further details, the reader is referred to [8].

The goal of the simulation is to analyze the system
and to evaluate what-if scenarios, i.e., to learn about the
interoperation of components. These are important when
designing for a given performance metric (whether it is
defined by an SLA or is a dynamic efficiency objective).

Our proposal is to use the verified and validated MPI
environment, and to replace the original MPI traces by
commercial DC traces. According to our approach, busi-
ness transactions in a cloud would translate into a caus-
ally ordered set of communication and computation
primitives. Proper instrumentation is the only way to be
able to trace transactions in a heterogeneous DC envi-
ronment, as shown in section II, and this can be ex-
tended as far as providing transaction information on L2
for wide usability and low overhead.

1) Case Study I: 802.1Qau-based Adaptive Routing
The recent LAN-SAN-StAN consolidation efforts

and the emergence of competitive IBA products have
increased the demand for a DC version of Ethernet with
multiple priority classes to support storage, clustering,
and LAN traffic. The sensitivity of DC applications to
latency and frame loss disfavor heavy protocol stacks,
or, in large multihop fabrics, the e2e re-transmissions as
in TCP. Several working groups in the IEEE and IETF
Standards bodies are addressing key issues to ensure that
10GE meets DC and HPC requirements. In IEEE, the
Data Center Bridging (DCB) Task Group is responsible
for defining the 802 Standards for congestion manage-
ment (802.1Qau), traffic differentiation (802.1Qbb), and
enhanced transmission selection (802.1Qaz). Similar to
HPC and IB networks, DCN applications favor fast L2
implementations in hardware. The DCB-Ethernet choice
of 8 hardware priorities, each independently flow-
controlled (as IB’s 15 Virtual Lanes), however, was ar-
gued at great lengths in 802—until an acceptable trade-
off could eventually be reached, namely, a Priority Flow
Control (PFC, defined in 802.1Qbb, also formerly
known as Per-Prio-Pause). This scheme required by the
storage and the other DC applications will be IEEE-
standardized in conjunction with a (distinct) congestion
management (CM) scheme that can be clearly specified
and contained to the DCN domain. This CM scheme,
also known as QCN [2,4,24,39], was defined in

Figure 7. Simulated DCN topology.

Figure 8. VENUS Simulation parameters for QCN-based AR.

 6

802.1Qau to prevent hotspot congestion spreading in
saturation trees [5,7], to stabilize the network operation
under heavy load, and to improve the overall DCN per-
formance.

While both DCB schemes, PFC and QCN, are now
being drafted to be approved as 802 standards, the de-
bate on QCN’s merits is still ongoing. Some DC ven-
dors and customers question QCN’s scalability, stability,
parameter tuning, and its open-loop (load agnostic) re-
covery—or, in general, QCN’s sufficiency for the next
decade’s DCs and compute clouds. At the other ex-
treme, various experts propose even further simplifica-
tions, such as the removal of CN tags. Finally, others ar-
gue that for certain applications such as storage and
HPC, 802’s PFC is sufficient, while CM is either unnec-
essary or potentially detrimental; instead, improved
routing and load balancing would be preferable for DC
and HPC.

Therefore, we propose a practical solution to the CM
debate: A management scheme that uses the QCN load
sensor (i) to re-balance the offered load by adaptively
routing (AR) the traffic around hotspots; (ii) if all ad-
missible multi-pathing options have been exhausted and
if the hotspot persists, to enable QCN to perform source-
injection rate control. Hence our two-tier approach: In
response to congestion detection by QCN, an attempt is
made to reroute “hot” flows (“culprits”) onto an alterna-
tive, uncongested path, and only if no uncongested al-
ternative exists are the culprits’ injection rates source-
controlled. We thus build on QCN—whose load sensor
is already built into DCB-compliant switches—to ex-
ploit an inherent property of DCNs: multi-pathing, i.e.,
the presence of multiple alternative paths between any
pair of DC nodes, as is also the case in the fat-tree to-
pology shown in Figure 2. We demonstrate how this can
lead to significant performance improvements by taking
full advantage of path diversity. Moreover, we highlight
the scheme’s practical usefulness by showing how it im-
proves the performance of a parallel benchmark pro-
gram on a realistic network.

802 CM Background: QCN fights saturation trees by
pushing the backlog to the edge of the network. By
means of congestion-notification (CN) frames, switches
instruct the sources of flows contributing to a specific
congestion point (hotspot) to adjust their send rate to
match the aggregate rate of all flows contributing to the
bottleneck bandwidth. Reducing the send rates is un-

avoidable if the congestion is due to endpoint conten-
tion, i.e., multiple sources sending to the same destina-
tion node at a higher aggregate rate than that node can
service.

However, congestion can also occur within the net-
work because of routing conflicts, i.e., because multiple
flows, with possibly diverse destinations, are mapped to
a common switch port by the routing algorithm. This
could be effectively resolved by rerouting the congested
flows onto an alternative path, thereby obtaining higher
throughput than QCN, which merely reduces the source
rates. Combining adaptive routing (AR) with CM can
notably decrease the delay and increase the throughput
of a congested network, because rates have to be re-
duced only if no alternative uncongested path exists. T-
hus, AR provides a spatial alternative to the temporal
reaction of QCN. The benefit is that no changes are nec-
essary to the Ethernet frame format, existing DCB
schemes, and Ethernet adapters. AR operates by modify-
ing the routing behavior of the Ethernet switches. Inter-
operation with 802.1Qau is seamless: if no alternative
path exists, the send rates will eventually be reduced to
match the bottleneck rate.

VENUS Simulation Results: The aim of our fully AR
scheme is to exploit the congestion information con-
veyed by notifications generated by 802.1Qau-enabled
switches. These CNs travel upstream from the conges-
tion point to the originating sources of the hot flows.
While relaying CNs, the upstream switches snoop their
content to learn about downstream congestion. By mark-
ing ports as congested with respect to specific destina-
tions, a switch can reorder its routing preference of eli-
gible output ports for the destinations affected to favor
uncongested ports over congested ones. How the routing
is configured to avoid loops, broadcast storms, and adapt
to changing loads is described in [40]. We select results
of simulating the DCN topology shown in Figure 7 in
VENUS, with QCN parameters set according to Figure
8.

The uniform traffic results in Figure 9 show that
without CM, throughput saturates at about 55.6% be-
cause there were nine hot flows in each direction (the
flows from hosts H1–H3 to H4–H6 and vice versa) con-
tending for a bottleneck link, hence each flow received
1/9 of the link rate. As CM was disabled, the input buff-
ers of the congested switches filled up rapidly, causing
PAUSE to be applied. As each of the cold flows shared

Figure 9. Uniform traffic results: w/o CM, w/ CM, w/ CM+AR.

Figure 10. Congesting traffic Tput results: left: QCN; right: AR.

 7

a link with at least one hot flow (e.g., all flows from
hosts H1–H3 traversed a congested link to switch S7,
and all flows from hosts H4–H6 traversed a congested
link to switch S9), the cold flows effectively obtained
the same throughput as the hot ones, leading to an ag-
gregate throughput per host of 5×1/9 = 55.6%. Enabling
QCN increased the throughput. The CM mechanism
controlled the congested queue lengths such that the
links leading to the congested switch did not have to be
paused continuously. Thus, unlike the case without CM,
here the cold flows (“victims”) were unaffected. Finally,
enabling AR increased the saturation throughput to
96.8% (>99.5% was achieved in other scenarios), indi-
cating that the AR scheme optimally exploited the avail-
able path diversity. The mean latency is reduced more
than 1000fold at loads between 55% and 85%. Infre-
quent misorderings occurred, with negligible effect on
latency: The mean length of the resequencing buffers
was less than one frame. Similarly, enabling AR for
non-uniform congesting traffic, i.e., flows contending
for resources, nearly triples the throughput per flow (to
1187.5 MB/s, the full offered load) with respect to QCN,
which sometimes is also 5:1 unfair.

Application Impact: HPC Benchmarking of AR. To
test AR’s practical benefits, we selected the Conjugate
Gradient (CG) application from the NAS Parallel
Benchmarks (NPB) as a suitable candidate because of its
high communication demands. To reflect accurately the
application behavior, we adopted a tracing method as in
Sect. II, but using HPC and MPI: First, the 5-phase CG
application was run on a real 128-node HPC machine.
During the HPC run, all MPI calls were recorded in a
trace. The communication pattern is shown in Figure 11.

Then, the trace file was replayed on VENUS. In Fig-
ure 12, we observe that when QCN is enabled without
AR (d-mod-m), the execution times are worse than
without CM, because the congestion induced in the final
phase leads to transmission rate reductions without any
hope of improvement, because the problem here is not
throughput loss due to saturation tree congestion. Rate
reduction can only improve the aggregate throughput if
there are “victims” and “culprits,” whereas here every
flow is a culprit—the definition of which has also been
argued in DCB. In addition, the runtime is too short for

QCN, as its rate recovery duration is in the range of 10s-
100s of ms, typically > 70 ms. Such results validate the
concerns that CM can be detrimental to real applica-
tions, and call for rigorous benchmarking before deploy-
ing CM in DC and HPC applications. However, large
parts of QCN are useful for load monitoring and dy-
namic load balancing, as proved here by our fully AR
proposal.

2) Simulation Challenge: Large Exploration Space
Simulation provides accurate results proportional to

how detailed the model has been captured, and to the
relevancy of the benchmark, i.e., workload or traffic pat-
tern. This requires the performance modeler to have a
deep understanding both of the DC architecture, down to
its most intimate details, and of workload characteris-
tics. Simulations, however, also have constraints. For
example, in a “Monte Carlo” type simulation of a DC
network, the following dimensions are to be explored
(partially or exhaustively): (d1) number of nodes; (d2)
switch/adapter architecture (buffering, queuing, schedul-
ing, and switch allocation are distinct subdimensions);
(d3) topology; (d4) LL-FC settings; (d5) QCN parame-
ters, if enabled; (d6) load balancing and adaptive rout-
ing, if enabled; (d7) traffic scenario; (d8) metrics of in-
terest; and (d9) number of simulation points to achieve
the prescribed confidence interval. The list includes only
the L2-specific dimensions; a complete datacenter
model up to L7 has orders of magnitude more dimen-
sions. To achieve correct and feasible simulations or to
be able to create closed control loops, first the dimen-
sion of the problem must be reduced. This can be done
by focused benchmarks with well-defined metrics and
by automated methods for data analysis.

B. Analytical Modeling

The simulation challenges above can be alleviated
by analytical means, e.g. dimension reduction, as will be
shown in the ensuing case study. Another use of ana-
lytics is in post-processing the traces acquired in Sect. II.
These usually must be de-noised, correlated, aggregated,
and scaled in time and space. Finally, stability analysis
and dynamic response investigations mandate an ana-
lytical formulation of the DC system. In an online
closed-loop management, the DC/cloud would take an
input of a desired value of a performance metric (set

Figure 11. 3.2-ms Paraver trace of optimal CG execution.

Figure 12. Performance under random task placement: AR outper-

forms even the offline route optimization (‘colored’).

 8

point) and optimize its services, i.e., reconfigure itself,
grow or shrink the set of resources used.

This is analogous to a control loop, which aims at
observing and regulating the dynamic behavior of a
plant. In this case, the controlled plant is the IT infra-
structure and its exogenous input is the workload.

The sensor on the plant is system management, and
the controller is an intelligent decision-making unit ca-
pable of provisioning the system to meet or approximate
optimization goals (set points) in steady-state opera-
tional points. We postulate a standard continuous state
space formulation of the DCN dynamic model:

))(),(()(tutzftz =& (1)

))(),(()(tutzgt =τ , (2)

where []TttQtz)(),()(Λ= is the internal state vector with

initial condition 0)0(zz = ; it describes the evolution of

the internal queues []TM tqtqtqtQ)(,),(),()(21 K= and

the injection trajectories, assuming continuous (instead
of switched) increase/decrease rates

[]TN tttt)(,),(),()(21 λλλ &

K

&&& =Λ .)(tu is the exogenous input

of Lt ≤)(l links with service rate max)(ll Ct ≤µ (lim-

ited by the per-lane QoS allocation) and Ntn ≤)(active

nodes with injection (driven by the external workload)

demand
max)(Λ≤tiλ . (.)f describes the DCN dynamics,

including the forward fR and reverse rR routing ma-

trices, AQM method, scheduling, and flow control. (.)g

describes the total delay)(tot tτ , which includes the for-

ward)(tfτ (measured delay) and the reverse delay

)(trτ (passive delay of receiving feedback in closed

loop). The above system can be re-formulated as an
∞H control with receding horizon prediction (for slow

variations of)(tτ&), in which the source-controlled sys-

tem with input)(tu , state)(tx , disturbance)(tw , and

output)(ty has the form

)()())(()()()()(twtDttutBtxtAtx

f +−+= τ& (3)

))(()()(ttxtCty totτ−= . (4)

Typically, predictive methods mandate that sources
declare their future injection rate demands

[]TN tttt)(,),(),()(21 λλλ K=Λ up to the maxτ horizon

ahead. Practically either we need either to relax or, ide-
ally, to remove this strict constraint which is not tenable
in Cloud and DCN applications. In either case, we must
characterize the maximal horizon based on delay obser-
vation statistics.

Next, we focus on analyzing the internal structure of
the system and present a system-level modeling ap-
proach and model evaluation techniques. We also pre-
sent a case study for building intelligent sensors to re-
duce the immense dimensionality of DC performance
modeling.

C. Case study II: Dimension Reduction

A datacenter is a heterogeneous interoperation of
many stand-alone systems with numerous internal tun-
ing parameters. Industry standard components, such as
operating systems and middleware applications, offer
numerous performance attributes to be measured by
monitoring solutions (custom applications or commer-
cial products). Such software provide exhaustive insight
into the internal parametric changes of the datacenter,
but easily overwhelm system engineers with superfluous
data, possibly even hiding important information. It is
essential to set up a model of the system that describes it
well, i.e., that incorporates all relevant metrics, but re-
moves the complexity of handling vast amounts of per-
formance attribute data.

In [19], the authors present an automated means of
identifying a set of highly relevant system-monitoring
sensor attributes with respect to an objective function. A
feature-selection algorithm for is used the discovery of a
subset (of sensor observations) that is relevant to a sys-
tem-level metric or service-level objective. The rele-
vancy and redundancy are determined by using the mu-
tual information of time series. The goal is to select a
subset S of all metrics monitored that meet two re-

quirements: (i) the mutual information of the elements
of S against a system-level metric (relevancy) is maxi-

Figure 14. Dimension reduction in a control loop.

Figure 15. (left) Overall CPU utilization of the Apache HTTP server

(%). (right) Number of network packages sent by the database cluster

controller (packet/s):Two system monitoring metrics selected as most

importand by the mRMR algorithm

 9

mal, and (ii) the mutual information among the elements
of S (redundancy) is minimal. Formally, the mutual in-

formation I of probability variables x and y is de-

fined as:

dxdy

ypxp

yxp
yxpyxI

)()(

),(
log),();(∫∫= (5)

These criteria can be optimized by iteratively adding

elements ix (representing time series) to S based on

the following criterion (Sm = and 1−mS being the set

of metrics selected prior to the current iteration):










−
− ∑

−

−

∈

−∈

1

1
);(

1

1
);(max

mi

mj

Sx

ijjSXx xxI
m

cxI (6)

The solver algorithm, “minimum-Redundancy-
Maximum-Relevancy” (mRMR) was introduced in [22]
with a detailed description and case studies.

Our aim is to reduce the dimension of the DC-
monitoring data by algorithmic analysis. Here is a brief
summary of the key steps: (i) Instrumenting the infra-
structure with measurement agents; (ii) Running bench-
marks or other workloads on the system; (iii) Collecting
internal performance attribute values and values of high-
level-integrated metrics as time series; (iv) Selecting a
metric as objective function; (v) Finding a minimum re-
dundant set of time series (dimensions) that are maxi-
mally relevant for the objective function by iterative so-
lution of (6); (vi) Supplying DC control with this set.

The mRMR algorithm is used in and evaluated for a
testbed of a small multi-tier infrastructure with central-
ized system monitoring. The overall throughput ([trans-
actions per second]) is selected as an objective metric,
the load is doubled at 2/3 of the experiment interval
(dashed line in Figure 14). Based on the results, we see
the need for (a) run-time interaction, for example, after
the appearance of server CPU usage in S (Figure 14,

right); new servers can be added to that tier to handle the
load, and (b) design-time guidance, for example, the
number of network packets transmitted (Figure 14, left)
being in S can indicate underplanned network link ca-

pacity. These are two of the 10 selected metrics of the
example result shown in [19].

This approach helps to understand the impact chains
inside the system and to identify control attributes. The
next step towards realizing intelligent actuation would
be to provide a classification of attributes to controllable
parameters and a state-machine-like set of rules that is
able determine the type of actuation to be carried out.

IV. CONCLUSIONS AND FUTURE WORK

In this paper, we have shown the challenges of
benchmarking a DCB Ethernet-federated datacenter, and
some of the potential methods to overcome these chal-
lenges. Moreover, we have confirmed the benefits of
rigorous DC benchmarking based on advanced monitor-

ing and modeling. As our main contribution, we have
proposed a three-pronged approach to DC management,
which combines workload and resource monitoring with
performance modeling, both by simulation and analysis.

These methods build on our recent progress made in
key independent fields: Ethernet DCB monitoring on
L2, ARM-based transaction tracing, large-scale HPC
simulations in VENUS, and analytical modeling of dy-
namic and distributed systems. Using VENUS to
benchmark 802-based AR, we have demonstrated the
load-balancing potential of the upcoming 802.1Qau
standard. Our first benchmarking results showed that the
DCN performance can be radically improved, some-
times by orders of magnitude. For example, the fully
adaptive routing scheme proposed in Sect III.1 reduces
the execution time of the CG benchmark without incur-
ring any of the detriments exhibited by QCN in this
case. Next, we have used an analytical sensor selection
method—capable of automatically processing the DC-
monitoring streams—to identify the set of primary met-
rics that dominate the overall DC operation. Some of
these benchmarks and simulation tools have already
been used to shape RapidIO, IBA CM, and the upcom-
ing IEEE 802 DCB Ethernet.

Next Steps: With the progress toward cloud comput-
ing and mega-node datacenters, system-level optimiza-
tion and management are areas of growing relevance in
IT. The community is making steady progress in DC
benchmarking, improved scheduling and load balancing,
and ultimately, toward automated Cloud management
and optimization. However, a candid assessment of the
current situation reveals areas where more effort is
needed. Particularly vexing is the lack of an established
set of DC benchmarks, or at least, of a guiding method-
ology to this end. Although most of the standards bod-
ies, researchers, vendors, and customers are asking for
DC traces, workloads and traffic generators, no such
data is publicly available yet. This we attribute to the
following: (i) lack of a standard DC message-passing li-
brary, similar to MPI in HPC, and (ii) lack of monitor-
ing instrumentation capable of (DC and cloud) system-
level benchmarking. The latter lack is sustained by the
continuing prevalence of segregated, component-level
benchmarking: CPU, server, JVM, database. etc.
Despite these challenges, DC workload characterization
and performance benchmarking constitute a promising
area of research for the systems community.

V. ACKNOWLEDGEMENTS

We thank R. Luijten, W. Denzel, G. Rodriguez, Z.
Egel, D. Toth, A. Scicchitano, and Charlotte Bolliger for
their contributions.

REFERENCES

[1] Gusat, M., et al., “On Flow Completion Time Benchmarking in
Datacenters,” http://www.ieee802.org/1/files/public/docs2007/
au-sim-ZRL-FCT-BMRK-r03.pdf , 2007

 10

[2] Pan, B. Prabhakar, and A. Laxmikantha, “QCN: Quantized
Congestion Notification,” 2007, www.ieee802.org/
1/files/public/docs2007/au-prabhakarqcn-description.pdf

[3] Bergamasco, “Ethernet Congestion Manager (ECM)
Specification,” Cisco Systems, Draft EDCS-574018, Feb. 2007.

[4] “IEEE Standard for Local and Metropolitan Area Networks—
Virtual Bridged Local Area Networks - Amendment: 10: CN,”
http://www.ieee802.org/1/pages/802.1au.html, 802.1Qau.

[5] Pfister et al., “Solving hot spot contention using InfiniBand
Architecture congestion control,” Proc. HP-IPC 2005, Research
Triangle Park, NC, July 2005.

[6] Dukkipati, McKeown. “Why flow-completion time is the right
metric for congestion control,” SIGCOMM Comput. Commun.
Rev. 36, 59-62, 2006

[7] Pfister, Norton, “Hot spot contention and combining in
multistage interconnection networks,” IEEE Trans. Computers,
vol. C- 34, no. 10, pp. 933–938,. 1985.

[8] Minkenberg, C., Rodriguez, G., “Trace-driven co-simulation of
high-performance computing systems using OMNeT++,” Proc.
2nd Int’l Workshop on OMNeT++, 2009

[9] Gunter et al., “Log summarization and anomaly detection for
troubleshooting distributed systems,” Proc. 8th IEEE/ACM Int’l
Conf. on Grid Computing, 2007

[10] Barham et al., “Using Magpie for request extraction and
workload modelling,” Proc. 6th USENIX OSDI, 2004.

[11] Chen et al., “Path-based failure and evolution management,”
Proc. 2004 USENIX Symposium on Network Systems Design
and Implementation, 2004.

[12] Mirgorodskiy, Miller, “Diagnosing distributed systems with
self-propelled instrumentation,” Technical Report, University of
Wisconsin,, 2007

[13] Mysore et al., “Understanding and visualizing full systems with
data flow tomography,” Proc. ASPLOS 2008.

[14] Agarwala et al., “E2eprof: Automated end-to-end performance
management for enterprise systems,” Proc. DSN 2007.

[15] Aguilera et al., “Performance debugging for distributed systems
of black boxes,” Proc. ACM Symposium on Operating Systems
Principles (SOSP) 2003.

[16] Anandkumar et al., “Tracking in a spaghetti bowl: monitoring
transactions using footprints,” Proc. ACM SIGMETRICS, 2008

[17] Liu et al., “Real-time Application Monitoring and Diagnosis for
Service Hosting Platforms of Black Boxes”, Proc. 10th
Symposium on Integrated Network Management, 2007

[18] Denzel W., et al., “A framework for end-to-end simulation of
high-performance computing systems.” Proc. 1st Int’l Conf. on

Simulation Tools and Techniques for Communications,
Networks and Systems, 2008, article 21.

[19] Paljak et al., “Sensor Selection for IT Infrastructure
Monitoring,” unpublished.

[20] Ozturk, LaFon, “DAFA: Distributed Application Flow
Analyzer,” Proc. Fifth Int’l Conf. on Information, Communica-
tions and Signal Processing, 2005, pp. 404-408, 2005

[21] Moe et al., “Using Execution trace data to improve distributed
systems,” Proc. Int’l Conf, on Software Maintenance
(ICSM'02), 2002.

[22] Peng et al., “Feature selection based on mutual information:
criteria of max-dependency, max-relevance, and min-
redundancy,” IEEE Trans. Pattern Analysis and Machine
Intelligence, vol. 27, no. 8, pp. 1226-1238, 2005.

[23] Chen Yoshihira. “Modeling and tracking of transaction flow
dynamics for fault detection in complex systems,” IEEE Trans.
Dependable Secur. Comput, vol. ?, pp. 312-326, 2006

[24] Minkenberg, C., M. Gusat, “Congestion management for 10G
Ethernet,” Proc. Second Workshop on Interconnection Network

Architectures: On-Chip, Multi-Chip (INA-OCMC 2008),
Göteborg, Sweden, Jan. 2008

[25] Agarwala et al. “SysProf: Online distributed behavior diagnosis
through fine-grain system monitoring,” Proc. Distributed
Computing Systems, 2006. ICDCS 2006, pp. 8-8, 2006

[26] Chanda et al., “Whodunit: transactional profiling for multi-tier
applications,” SIGOPS Oper. Syst. Rev. vol. 41, pp. 17-30, 2007

[27] Jun Li, “Monitoring and characterization of component-based
systems with global causality capture,” Proc. 23rd Int’l Conf.
on Distributed Computing Systems, pp. 422-431, 2003

[28] Gschwind et al., “WebMon: A performance profiler for web
transactions,” Proc. WECWIS 2002, pp. 171-176, 2002

[29] Application Response Measurement,
http://www.opengroup.org/management/arm/

[30] TPC-W benchmark, http://www.tpc.org/tpcw/

[31] Schmid et al., “Measuring end-to-end performance of CORBA
applications using a generic instrumentation approach,” Proc.
ISCC 2002, pages?

[32] Lin et al., “A new TCP and UDP network benchmark suite”.
Proc. 2007 Spring Simulation Multiconference – Vol. 1, pp.
211-217, 2007 [former 39]

[33] Meijer et al., “User programmable virtualized networks,” Proc.

Second IEEE Int’l Conf. on E-Science and Grid Computing,
2006

[34] Suzumura et al., “Performance Comparison of Web Service
Engines in PHP, Java and C”, Proc. 2008 IEEE Int’l Conf. on
Web Services, pp. 385-392, 2008

[35] Sachs et al., “Performance evaluation of message-oriented
middleware using the SPECjms2007 benchmark,” Perform.
Eval. (2009, in press).

[36] Lam et al., “A performance study of clustering web application
servers with distributed JVM,” Proc. Parallel and Distributed
Systems, 2008. ICPADS '08., pp. 328-335, 2008

[37] Traeger et al.,. “A nine year study of file system and storage
benchmarking,” IEEE Trans. Storage, pp. 1-56, 2008

[38] Phansalkar et al., “Four Generations of SPEC CPU
Benchmarks: What has changed and what has not?” Technical
Report TR-041026-1, The University of Texas at Austin, 2004.

[39] Lu, Y., et al.,“Congestion control in networks with no
congestion drops,” in Proc. 44th Annual Allerton Conference on

Communication, Control, and Computing, Monticello, IL, Sept.
2006.

[40] Minkenberg, C., et al., “Adaptive routing for convergence
enhanced Ethernet,” Proc. 2009 Int’l Workshop on High-

Performance Switching and Routing (HPSR 2009), June 2009,
Paris, France (to appear).

Java and all Java-based trademarks and logos are trademarks of Sun
Microsystems, Inc. in the United States, other countries, or both.

Microsoft and Windows are trademarks of Microsoft Corporation in
the United States, other countries, or both.

IBM and Tivoli are trademarks of International Business Machines
Corporation in the United States, other countries, or both.

Other company, product, or service names may be trademarks or
service marks of others.

