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Abstract— Currently, datacenters (DC) are the largest 

closed-loop systems in IT, growing toward multi-million 

node Clouds. Benchmarking, optimizing and managing 

such large systems is an active area of research and an 

open challenge, driven by the trend toward stricter service 

level agreements (higher performance) and lower power. 

To evolve the DC design and management from today’s 

ad-hoc solutions to a rigorous discipline, we argue the 

need for benchmarking based on advanced monitoring 

and modeling methods. In addition to a positional report 

of work in progress—our primary target—here we con-

tribute a three-pronged DC benchmarking proposal. Our 

approach combines resource monitoring and workload 

characterization with DC performance modeling, both by 

simulation and by analytical means. While the monitoring 

and transaction tracing module is still at an early stage, 

our modeling methods have already been successfully 

tested in the two study cases. They build on the recent 

progress made in key independent fields: Ethernet DCB 

monitoring on L2, ARM-based transaction tracing, large-

scale High-Performance Computing (HPC) simulations, 

and analytical modeling of dynamic distributed systems.  

Keywords - datacenter, performance, benchmarking, 802, 

Ethernet, network, model, load,  transaction,  trace, ARM 

I.  INTRODUCTION  

Cloud computing is an emerging method of deliver-
ing IT services, in which applications, data, and re-
sources are rapidly provisioned without requiring the 
end user to purchase or maintain these resources.  In a 
cloud-computing datacenter (DC), applications are pro-
vided as standardized offerings to end users over a dy-
namically reconfigurable network. This enables a more 
flexible cost and pricing business model, and allows the 
DC to deploy new resources and technologies much 
faster than with current methods.  This, in turn, is driv-
ing significant changes in the way computational re-
sources are used, benchmarked, and optimized.  

The traditional DC has taken advantage of the low 
cost of computing power to proliferate large quantities 
of under-utilized servers, storage, and networking, often 
without a clear picture of how the resulting system may 
perform. As the DC applications and workloads evolve, 
this approach leads to inefficient use of resources and 
power.  In an effort to address these issues, the modern 

DC is moving towards new architectures based on hier-
archical clustering of virtualized servers around a con-
verged message-passing DC network (DCN). An en-
semble of one or more such virtualized DCs is called a 
compute cloud. Cloud computing uses scale-out IT 
building blocks to improve the cost/performance ratio.  

Regarding the networking infrastructure, currently 
entailing LAN (Ethernet), StAN (Fibre Channel, FC) 
and SAN (InfiniBand Architecture, IBA, or Myrinet) so-
lutions, eventually the DC/Cloud traffic will aggregate 
onto a converged DCN fabric, likely based on the 802 
datacenter bridging (DCB) Ethernet running at 10–100 
Gbit/s. Although the opportunity exists to consolidate 
many under-utilized links onto a single, higher-data-rate 
fabric, the increase in resource utilization must not be al-
lowed to impact user-perceived application perform-
ance. Recognizing this, many cloud service level agree-
ments (SLAs) enforce stricter limits on transaction la-
tency, jitter, and sustained throughput; these, in turn, 
drive requirements for improved scheduling and net-
work congestion control. It remains to be demonstrated 
whether a converged network can deliver best-of-breed 
performance if compared with a dedicated, single-
purpose network. Furthermore, some new Ethernet-
federated DCN fabrics offer significant scale-out capa-
bilities by using virtual chassis backplanes. This has the 
potential to scale converged fabrics to port counts sig-
nificantly higher than anything currently deployed. New 
benchmarking methodologies will be required to design, 
optimize, and manage these fabrics. 

While performance optimization on a component 
level for individual servers is well developed, it is defi-
nitely less mature on an integrated systemic level. Cloud 
computing is more conducive to system-level analysis 
than its predecessors, and thus requires a new approach 
to DC benchmarking. The workloads are heterogeneous, 
asynchronous, and not well understood at the DCN 
level; furthermore, cloud-computing DCs incorporate a 
mixture of mainframes and other types of servers.  Tra-
ditional component-level benchmarks include the SPEC 
benchmarks often used for CPU and cache profiling 
[38], or network component benchmarks, such as [39], 
often for examining NICs and network protocols. Other 
efforts such as TPC-W benchmarks for On-Line Trans-
action Processing (OLTP) [30], although intend to meas-
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ure a complex systems’ overall performance, must by 
necessity often focus on only a few main components: 
web service engines [34], message-oriented middleware 
[35], the Java

TM
 Virtual Machine [36] or storage systems 

[37].  While these approaches remain relevant, they may 
no longer correlate to the overall cloud DC and DCN 
system performance.  An emerging new class of holistic 
DC benchmarking that is application- and network-
centric must include global knowledge of the current DC 
workloads and their traffic patterns.  Many of these re-
main unknown today and must be discovered through 
extensive instrumentation, monitoring, and modeling. 
Ideally, the resulting benchmarking approach will accu-
rately characterize the DC workload and performance, 
will scale beyond the 1M-node Cloud and run with low 
overhead. 

In this paper, we study the effect of DC resource 
configuration on the overall performance. We address 
the problem of DC-level qualitative and quantitative 
performance evaluations, in order to both maximize per-
formance—which may be constrained by SLAs—and 
minimize costs, including energy consumption. These 
(conflicting) objectives translate into optimizing a dis-
tributed system by making it adapt to dynamically 
changing setpoints and operating conditions, while re-
ducing power and over-provisioning.  

The paper is organized as follows: In section II, DC 
monitoring is introduced. First, in section II.A we de-
construct a typical DC to understand the system struc-
ture, the distributed resource topology imposed by the 
interconnection network graph, and finally the workload 
mapping. Next, in section II.B we investigate the chal-
lenge of projecting business transactions to infrastruc-
ture-level flows, focusing on transaction tracing. This 
section is intended as a tutorial and field review of the 
most recent related work. The monitoring part combines 
transaction tracing with analytics to correlate events, ex-
tract deterministic or statistical transaction features, and 
generate equivalent traffic for use in modeling. In sec-
tion III we describe our two established modeling meth-

ods for DC/Cloud performance evaluation, i.e. simula-
tion and analytics. Each method is exemplified with a 
case study showing recent results of our proposed 
method. We conclude in section IV, also including a 
discussion of future work. 

II. DATACENTER MONITORING 

A. Deconstructing the DC: A Topological View 

We examine the effect of the DC structural configu-
ration on the overall performance. To describe the struc-
tural configuration, we introduce a three-pronged frame-
work, depicted in Figure 1. It is expressed on three lev-
els of abstractions by three graphs: (a) The nodes on the 
business topology level are services, and edges connect 
two nodes if one service uses or relies on the other. (b) 
The application level contains all deployed software 
components as nodes and their interdependencies as 
edges. (c) The infrastructure level is composed of com-
putational and network device nodes; the edges of this 
level are the network links. Mapping between the three 
graphs exists: in the computing cloud services are 
mapped onto their provider applications, and applica-
tions onto infrastructure resources used. To understand a 
system, each level and the mapping between the levels 
must be understood. 

B. Transaction Tracing in DC. Related work. 

1) Transactions in datacenters 
A transaction is a causal data flow from the entry 

point of a request to the exit point of the response, initi-
ated by an actor of the system. A transaction represents 
a trajectory in the DC state space. Transactions on each 
abstraction level of the DC topology (Figure 1) appear 
as ordered paths on the graph. On level a, a transaction 
is a service invocation, which may also rely on other 
services to serve the response. Inside the service pro-
vider, on the application level (level b); a transaction is a 
series of method invocations, generally spanning multi-
ple applications with RPC-style interactions. Finally, a 
transaction translates into an ordered set of resource oc-

 
Figure 1. Abstraction levels of a DC structure 

 
Figure 2. A typical graph of the infrastructure level: DCN fat-tree 

topology. Bold: one of the multiple available routing paths e2e 
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cupancies: a path of network packet flows and computa-
tion times on the infrastructure level, flowing through 
multiple servers and the interconnecting DCN of the in-
frastructure topology (level c and Figure 2). 

2) Transaction-Tracing Methods. Overview 
The task of monitoring, in this case, is to track trans-

actions following the causal path of component-level re-
source occupancies. This provides performance informa-
tion broken down into components and traces that can 
later be used for driving the simulation or validating 
models.  

There are three main types of transaction observation 
and reconstruction methodologies: white-, gray-, and 
black-box. In a white-box model, all source code is 
available and can be freely modified, instrumented; 
either application-specific assumptions or globally 
unique identifiers (GUIDs) are used in most cases. This 
is the case for NetLogger [9] or the Application Re-
sponse Measurement standard (ARM, [29]) where the 
application source code is extended with explicit tracing 
information. WebMon [28] uses cookies modified for 
storing GUIDs that are created by custom JavaScript, 
and these are passed to instrumented web and applica-
tion servers. User Programmable Virtualized Networks, 
described in [33], provide the developer with the free-
dom to handle network interactions (including tagging 
packets with ID), as well as to extend the application 
and to modify the typical OS kernels.  However, in gen-
eral the application source code is not available, or it is 
problematic to modify owing to its complexity or other 
reasons. In this case, platform-level instrumentation may 
still be feasible, which involves the extension of OS 
components, e.g., protocol implementations, middleware 
applications or runtime environments, to support tracing.  

Next, we look at some gray-box solutions, Magpie 
[10] is built on Microsoft

®
 Windows

®
 platform and uses 

a built-in event-logging framework for reconstructing 
causal paths, whereas for distinguishing between 
threads, auxiliary events and application-specific sche-
mas are used (please note that earlier versions of Magpie 
used GUIDs). PinPoint [11] uses platform-specific trac-
ers that extend components, such as the web server and 
several J2EE containers, to tag transactions with GUIDs 
and to preserve the tagging. A similar instrumentation 

for the Java Virtual Machine [12] uses agents in the run-
time-environment and inserts trace statements ahead of 
the flow control. CORBA interceptors are also used, to-
gether with the ARM standard [31] or focusing on statis-
tical approaches [21]. For CORBA/COM, a method is 
introduced  that uses automatically generated skeletons 
and stubs to handle GUIDs [27]. In [13], ISA level in-
strumentation is used, i.e., a tag mapping is maintained 
for every byte of the memory and tags are inserted into 
and extracted from Ethernet frames. Whodunit [26] de-
tects transactions communicating through shared mem-
ory, events or RPCs by means of an extensive, but low-
overhead instrumentation. SysProf [25] focuses on pro-
filing transactions, keeping track of resource utilization 
using kernel-level instrumentation, but requires addi-
tional supplied knowledge to identify interleaving trans-
actions. 

At the other extreme, the most generic case is the 
black-box approach, where no previous knowledge on 
the components is provided, and only passive monitor-
ing instruments (with practically zero performance im-
pact) are used. The causal-path reconstruction is based 
on probability and statistics. In their mathematical over-
view of the problem [15, 16], the authors present two al-
gorithms: harnessing nested sub-transactions (identify-
ing call-pairs and matching the probably nested tuples), 
and a convolution method applied on message traces as 
time signals. E2Eprof [14] analyses log files and esti-
mates most probable causal paths based on cross corre-
lation. In [17] and [20]. a network-only approach focus-
ing on TCP is introduced; and in [23] the mass charac-
teristics of transactions are analyzed. 

3) Our Approach: ARM/ITCAM 
We use a grey-box scenario on the concept of ex-

tending middleware components. We take advantage of 
middleware applications offering the ability to plug in 
additional code modules by extracting attributes about a 
transaction and sending that information to a separate 
tracking processor. One example of such transaction 
tracking is the IBM

®
 Tivoli

®
 Composite Application 

Manager (ITCAM) for Transactions; this software is 
based on automatic insertion of ARM calls to the control 
flow and harnessing native instrumentation of supported 
middleware. Transaction tracking uses the techniques of 
linking (a single attribute is used to group events) and 
stitching (several attributes are combined using a prede-
fined method) to correlate transactions end-to-end (Fig-
ure 3).  

The challenge of transaction tracing for further anal-
ysis and trace-driven simulation is two-fold:  

 
Burstk Burs Burstk

IBGaIBGapk

Burs Burs

IBGaIFGa  

Figure 4. Transaction consisting of 5 bursts, each having 7-15 

Ethernet frames, with an arbitrary burst size and inter-burst gap. 

 

 
Figure 3. The ARM projection of a transaction on the DC 

infrastructure 
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(i) The lack of a de-facto standard DC communica-
tion protocol similar to the Message Passing Interface 
(MPI), typically used for instrumentation tap, in HPC. In 
DCs, instead of MPI calls, there are RPC, CORBA, 
JDBC, etc. calls, to name just a few. There is a multi-
tude of protocols, some of which are proprietary and so 
may be their implementation. Even when one has an in-
strumented version of one or some of these protocols, 
generalization is an open issue. 

(ii) Observing and rebuilding causal paths (trajecto-
ries) are demanding in a typical DC environment. Trans-
actions span across multiple, different-purpose subsys-
tems and protocols; most of the information exchange is 
encrypted which is, by design, against observability. 

4) DCN-level Benchmarking Workload and Metrics 
The application transactions mapped to the network 

layer translate into flits, packets/frames, and flows. A 
given workload entails the following components, listed 
hierarchically: work, job/transaction, flow, burst, and 
packet (frame, flit). Each component is described by two 
random variables (e.g. burst size and inter-burst gap), 
for which we must choose a distribution based on the 
workload characteristics of the specific benchmark (in-
ter-burst/frame gap, Figure 4). 

The best established performance metrics at DCN 
level are latency (end-to-end (e2e) delay at L7), 
throughput, jitter, and, at times, fairness. More recently 
[6], argued for the introduction of Flow Completion 
Time (FCT) as more representative of the user experi-
ence. FCT is the time interval between the injection of 
the first Ethernet frame by the source node and the re-
ception of the last frame at the destination node. One 
problem on L2, where DCB is defined in 802, is the 
flow definition – which differs from that of a L3/4 
(TCP) flow. Hence, the two main challenges of FCT as 
a DCN metric are as follows:   

1) Sensitivity to distributions renders the choice of 
distribution a delicate issue. For example, for Pareto dis-
tributions, FCT loses its relevancy because  

FCT = Σ (tinject + tqueue + tflight + tRTX) ≠  Le2e(X),  
i.e., the central limit theorem does not apply. Therefore, 
each term of the sum (except for tflight) must be analyzed 
and reported independently.  

2) The presence of priority flow control (PFC) as de-
fined in and required by most DC applications, includ-
ing Fiber Channel over Ethernet (FCoE), requires pre-
cise definition of flow completion and rigorous account-
ing in the simulation statistics of: (1) flows received en-
tirely without any loss; (2) flows received entirely with 
some loss; (3) flows received partially, and (4) flows not 
yet having arrived at destination.  

As none of these above issues has been practically 
solved (for a solution see [1]), although FCT has been 
proposed as a DCN benchmarking metric, it was not 
pursued in 802 DCB. Hence, the metrics used most in 
DCs are latency and throughput (primary), and power, 
fairness and jitter (secondary). Although power is ex-
pected to become a primary metric, we currently cannot 
properly monitor and aggregate all power statistics into 
a meaningful metric, such as [TPS/Watt]. Another open 
issue is how to homogenize the L7/application met-
rics—e.g. TPS and response time—with the L2 DCN 
metrics, where throughput and latency represent aggre-
gate statistics. The translation between application and 
DCN (L7:L2) metrics is the role of “integrated” metrics 
conversion—a problem yet to be solved.  

The DCN-specific benchmarks used here can be 
based either on traces or on synthetic traffic generators. 
For the former case, the trace format includes {(1) 
TimeStamp | (2) SRC | (3) DST | (4) Prio | (5) BSize}; in 
addition, field (1) is further extended with the GlobalID 
from transaction-tracking. The latter case of synthetic 
generators is more elaborate [1], evolving along three 
axes as in Figure 5. 

III. DATACENTER MODELING 

A. Simulation Modeling 

Our approach for modeling is based on structural in-
formation (i.e. topology graphs) about the system and 

 

 

Figure 5. DCN Benchmarking axes. Topology is decided by the DC 

architect and the DCN vendor; Metrics are imposed by the SLAs; 

Traffic Distributions depend on the DC workload characteristics. 

 

 

Figure 6. VENUS simulation platform.  
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the concept of transactions being ordered paths on to-
pology graphs. The main requirements of a suitable 
simulation environment are architectural accuracy (all 
relevant DC details being captured), scalability to full 
DCN size. and execution speed. We draw from our ex-
periences in modeling HPC systems, where the two 
main simulation methods are “Monte Carlo” and trace-
driven.  

In a “Monte Carlo” type simulation synthetically 
generated workloads, based on predetermined probabil-
istic distributions, drive accurate functional models. In a 
trace-driven simulation, computing nodes are repre-
sented by a trace that contains two basic kinds of re-
cords, namely computation and communication, rather 
than by an exact model of their behavior. Computations 
are not actually performed, but represented by the 
amount of CPU time they would consume in reality. 
Communications are transformed into data messages 
that are fed to a model of the DCN. To ensure accurate 
results, the simulation should preserve causal dependen-
cies between records, e.g., when a particular computa-
tion depends on data to be delivered by a preceding 
communication, the start of the computation must wait 
for the communication to complete. 

As many HPC applications are based on MPI, trac-
ing MPI calls is a suitable method to characterize the 
communication patterns of HPC workloads.  

An example of this approach is the MARS simulator 
presented in [18]. Here we give a brief overview of its 
successor, the VENUS-Dimemas HPC tracing and simu-
lation environment, depicted in Figure 6.  This is a co-
simulation environment in which Venus is responsible 
for detailed simulation of the network and Dimemas for 
replaying application traces, i.e., simulating computation 
nodes. Paraver processes the simulation output and pro-
vides a graphical representation of the state of MPI 
threads and of the communication between them and 
network devices. The state of an MPI thread is an activ-
ity (idle, running, waiting, etc.) and the buffer-filling 
level of the network level. The inputs for the simulation 
environment are the following: (a) network topology de-
scriptor; (b) a route descriptor for explicit definitions of 
routes between any two hosts; (c) network device mod-
els (representing Myrinet DCN hardware in this case), 

and (d) MPI application run traces and task mappings. 
For further details, the reader is referred to [8]. 

The goal of the simulation is to analyze the system 
and to evaluate what-if scenarios, i.e., to learn about the 
interoperation of components. These are important when 
designing for a given performance metric (whether it is 
defined by an SLA or is a dynamic efficiency objective).  

Our proposal is to use the verified and validated MPI 
environment, and to replace the original MPI traces by 
commercial DC traces. According to our approach, busi-
ness transactions in a cloud would translate into a caus-
ally ordered set of communication and computation 
primitives. Proper instrumentation is the only way to be 
able to trace transactions in a heterogeneous DC envi-
ronment, as shown in section II, and this can be ex-
tended as far as providing transaction information on L2 
for wide usability and low overhead. 

1) Case Study I: 802.1Qau-based Adaptive Routing 
The recent LAN-SAN-StAN consolidation efforts 

and the emergence of competitive IBA products have 
increased the demand for a DC version of Ethernet with 
multiple priority classes to support storage, clustering, 
and LAN traffic. The sensitivity of DC applications to 
latency and frame loss disfavor heavy protocol stacks, 
or, in large multihop fabrics, the e2e re-transmissions as 
in TCP. Several working groups in the IEEE and IETF 
Standards bodies are addressing key issues to ensure that 
10GE meets DC and HPC requirements. In IEEE, the 
Data Center Bridging (DCB) Task Group is responsible 
for defining the 802 Standards for congestion manage-
ment (802.1Qau), traffic differentiation (802.1Qbb), and 
enhanced transmission selection (802.1Qaz). Similar to 
HPC and IB networks, DCN applications favor fast L2 
implementations in hardware. The DCB-Ethernet choice 
of 8 hardware priorities, each independently flow-
controlled (as IB’s 15 Virtual Lanes), however, was ar-
gued at great lengths in 802—until an acceptable trade-
off could eventually be reached, namely, a Priority Flow 
Control (PFC, defined in 802.1Qbb, also formerly 
known as Per-Prio-Pause). This scheme required by the 
storage and the other DC applications will be IEEE-
standardized in conjunction with a (distinct) congestion 
management (CM) scheme that can be clearly specified 
and contained to the DCN domain. This CM scheme, 
also known as QCN [2,4,24,39], was defined in 

 

 

Figure 7. Simulated DCN topology. 

 

 

Figure 8. VENUS Simulation parameters for QCN-based AR.  
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802.1Qau to prevent hotspot congestion spreading in 
saturation trees [5,7], to stabilize the network operation 
under heavy load, and to improve the overall DCN per-
formance. 

While both DCB schemes, PFC and QCN, are now 
being drafted to be approved as 802 standards, the de-
bate on QCN’s merits is still ongoing. Some DC ven-
dors and customers question QCN’s scalability, stability, 
parameter tuning, and its open-loop (load agnostic) re-
covery—or, in general, QCN’s sufficiency for the next 
decade’s DCs and compute clouds. At the other ex-
treme, various experts propose even further simplifica-
tions, such as the removal of CN tags. Finally, others ar-
gue that for certain applications such as storage and 
HPC, 802’s PFC is sufficient, while CM is either unnec-
essary or potentially detrimental; instead, improved 
routing and load balancing would be preferable for DC 
and HPC.  

Therefore, we propose a practical solution to the CM 
debate: A management scheme that uses the QCN load 
sensor (i) to re-balance the offered load by adaptively 
routing (AR) the traffic around hotspots; (ii) if all ad-
missible multi-pathing options have been exhausted and 
if the hotspot persists, to enable QCN to perform source-
injection rate control. Hence our two-tier approach: In 
response to congestion detection by QCN, an attempt is 
made to reroute “hot” flows (“culprits”) onto an alterna-
tive, uncongested path, and only if no uncongested al-
ternative exists are the culprits’ injection rates source-
controlled. We thus build on QCN—whose load sensor 
is already built into DCB-compliant switches—to ex-
ploit an inherent property of DCNs: multi-pathing, i.e., 
the presence of multiple alternative paths between any 
pair of DC nodes, as is also the case in the fat-tree to-
pology shown in Figure 2. We demonstrate how this can 
lead to significant performance improvements by taking 
full advantage of path diversity. Moreover, we highlight 
the scheme’s practical usefulness by showing how it im-
proves the performance of a parallel benchmark pro-
gram on a realistic network.  

802 CM Background: QCN fights saturation trees by 
pushing the backlog to the edge of the network. By 
means of congestion-notification (CN) frames, switches 
instruct the sources of flows contributing to a specific 
congestion point (hotspot) to adjust their send rate to 
match the aggregate rate of all flows contributing to the 
bottleneck bandwidth. Reducing the send rates is un-

avoidable if the congestion is due to endpoint conten-
tion, i.e., multiple sources sending to the same destina-
tion node at a higher aggregate rate than that node can 
service.  

However, congestion can also occur within the net-
work because of routing conflicts, i.e., because multiple 
flows, with possibly diverse destinations, are mapped to 
a common switch port by the routing algorithm. This 
could be effectively resolved by rerouting the congested 
flows onto an alternative path, thereby obtaining higher 
throughput than QCN, which merely reduces the source 
rates. Combining adaptive routing (AR) with CM can 
notably decrease the delay and increase the throughput 
of a congested network, because rates have to be re-
duced only if no alternative uncongested path exists. T-
hus, AR provides a spatial alternative to the temporal 
reaction of QCN. The benefit is that no changes are nec-
essary to the Ethernet frame format, existing DCB 
schemes, and Ethernet adapters. AR operates by modify-
ing the routing behavior of the Ethernet switches. Inter-
operation with 802.1Qau is seamless: if no alternative 
path exists, the send rates will eventually be reduced to 
match the bottleneck rate. 

VENUS Simulation Results: The aim of our fully AR 
scheme is to exploit the congestion information con-
veyed by notifications generated by 802.1Qau-enabled 
switches. These CNs travel upstream from the conges-
tion point to the originating sources of the hot flows. 
While relaying CNs, the upstream switches snoop their 
content to learn about downstream congestion. By mark-
ing ports as congested with respect to specific destina-
tions, a switch can reorder its routing preference of eli-
gible output ports for the destinations affected to favor 
uncongested ports over congested ones. How the routing 
is configured to avoid loops, broadcast storms, and adapt 
to changing loads is described in [40]. We select results 
of simulating the DCN topology shown in Figure 7 in 
VENUS, with QCN parameters set according to Figure 
8. 

The uniform traffic results in Figure 9 show that 
without CM, throughput saturates at about 55.6% be-
cause there were nine hot flows in each direction (the 
flows from hosts H1–H3 to H4–H6 and vice versa) con-
tending for a bottleneck link, hence each flow received 
1/9 of the link rate. As CM was disabled, the input buff-
ers of the congested switches filled up rapidly, causing 
PAUSE to be applied. As each of the cold flows shared 

 

 

Figure 9. Uniform traffic results: w/o CM, w/ CM, w/ CM+AR. 

 

Figure 10. Congesting traffic Tput results: left: QCN; right: AR. 
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a link with at least one hot flow (e.g., all flows from 
hosts H1–H3 traversed a congested link to switch S7, 
and all flows from hosts H4–H6 traversed a congested 
link to switch S9), the cold flows effectively obtained 
the same throughput as the hot ones, leading to an ag-
gregate throughput per host of 5×1/9 = 55.6%. Enabling 
QCN increased the throughput. The CM mechanism 
controlled the congested queue lengths such that the 
links leading to the congested switch did not have to be 
paused continuously. Thus, unlike the case without CM, 
here the cold flows (“victims”) were unaffected. Finally, 
enabling AR increased the saturation throughput to 
96.8% (>99.5% was achieved in other scenarios), indi-
cating that the AR scheme optimally exploited the avail-
able path diversity. The mean latency is reduced more 
than 1000fold at loads between 55% and 85%. Infre-
quent misorderings occurred, with negligible effect on 
latency: The mean length of the resequencing buffers 
was less than one frame. Similarly, enabling AR for 
non-uniform congesting traffic, i.e., flows contending 
for resources, nearly triples the throughput per flow (to 
1187.5 MB/s, the full offered load) with respect to QCN, 
which sometimes is also 5:1 unfair. 

Application Impact: HPC Benchmarking of AR. To 
test AR’s practical benefits, we selected the Conjugate 
Gradient (CG) application from the NAS Parallel 
Benchmarks (NPB) as a suitable candidate because of its 
high communication demands. To reflect accurately the 
application behavior, we adopted a tracing method as in 
Sect. II, but using HPC and MPI: First, the 5-phase CG 
application was run on a real 128-node HPC machine. 
During the HPC run, all MPI calls were recorded in a 
trace. The communication pattern is shown in Figure 11.  

Then, the trace file was replayed on VENUS. In Fig-
ure 12, we observe that when QCN is enabled without 
AR (d-mod-m), the execution times are worse than 
without CM, because the congestion induced in the final 
phase leads to transmission rate reductions without any 
hope of improvement, because the problem here is not 
throughput loss due to saturation tree congestion. Rate 
reduction can only improve the aggregate throughput if 
there are “victims” and “culprits,” whereas here every 
flow is a culprit—the definition of which has also been 
argued in DCB. In addition, the runtime is too short for 

QCN, as its rate recovery duration is in the range of 10s-
100s of ms, typically > 70 ms. Such results validate the 
concerns that CM can be detrimental to real applica-
tions, and call for rigorous benchmarking before deploy-
ing CM in DC and HPC applications. However, large 
parts of QCN are useful for load monitoring and dy-
namic load balancing, as proved here by our fully AR 
proposal. 

2) Simulation Challenge: Large Exploration Space 
Simulation provides accurate results proportional to 

how detailed the model has been captured, and to the 
relevancy of the benchmark, i.e., workload or traffic pat-
tern. This requires the performance modeler to have a 
deep understanding both of the DC architecture, down to 
its most intimate details, and of workload characteris-
tics.  Simulations, however, also have constraints. For 
example, in a “Monte Carlo” type simulation of a DC 
network, the following dimensions are to be explored 
(partially or exhaustively): (d1) number of nodes; (d2) 
switch/adapter architecture (buffering, queuing, schedul-
ing, and switch allocation are distinct subdimensions); 
(d3) topology; (d4) LL-FC settings; (d5) QCN parame-
ters, if enabled; (d6) load balancing and adaptive rout-
ing, if enabled; (d7) traffic scenario; (d8) metrics of in-
terest; and (d9) number of simulation points to achieve 
the prescribed confidence interval. The list includes only 
the L2-specific dimensions; a complete datacenter 
model up to L7 has orders of magnitude more dimen-
sions. To achieve correct and feasible simulations or to 
be able to create closed control loops, first the dimen-
sion of the problem must be reduced. This can be done 
by focused benchmarks with well-defined metrics and 
by automated methods for data analysis.  

B. Analytical Modeling 

The simulation challenges above can be alleviated 
by analytical means, e.g. dimension reduction, as will be 
shown in the ensuing case study. Another use of ana-
lytics is in post-processing the traces acquired in Sect. II. 
These usually must be de-noised, correlated, aggregated, 
and scaled in time and space. Finally, stability analysis 
and dynamic response investigations mandate an ana-
lytical formulation of the DC system. In an online 
closed-loop management, the DC/cloud would take an 
input of a desired value of a performance metric (set 

 

 

Figure 11. 3.2-ms Paraver trace of optimal CG execution. 

 

Figure 12. Performance under random task placement: AR outper-

forms even the offline route optimization (‘colored’). 
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point) and optimize its services, i.e., reconfigure itself, 
grow or shrink the set of resources used.  

This is analogous to a control loop, which aims at 
observing and regulating the dynamic behavior of a 
plant. In this case, the controlled plant is the IT infra-
structure and its exogenous input is the workload.  

The sensor on the plant is system management, and 
the controller is an intelligent decision-making unit ca-
pable of provisioning the system to meet or approximate 
optimization goals (set points) in steady-state opera-
tional points. We postulate a standard continuous state 
space formulation of the DCN dynamic model: 

 

 
))(),(()( tutzftz =&  (1) 

 

 
))(),(()( tutzgt =τ , (2) 

where [ ]TttQtz )(),()( Λ=  is the internal state vector with 

initial condition 0)0( zz = ; it describes the evolution of 

the internal queues [ ]TM tqtqtqtQ )(,),(),()( 21 K=  and 

the injection trajectories, assuming continuous (instead 
of switched) increase/decrease rates 

[ ]TN tttt )(,),(),()( 21 λλλ &

K

&&& =Λ . )(tu  is the exogenous input 

of Lt ≤)(l  links with service rate max)( ll Ct ≤µ  (lim-

ited by the per-lane QoS allocation) and Ntn ≤)(  active 

nodes with injection (driven by the external workload) 

demand 
max)( Λ≤tiλ . (.)f  describes the DCN dynamics, 

including the forward fR  and reverse rR  routing ma-

trices, AQM method, scheduling, and flow control. (.)g  

describes the total delay )(tot tτ , which includes the for-

ward )(tfτ  (measured delay) and the reverse delay 

)(trτ  (passive delay of receiving feedback in closed 

loop). The above system can be re-formulated as an 
∞H  control with receding horizon prediction (for slow 

variations of )(tτ& ), in which the source-controlled sys-

tem with input )(tu , state )(tx , disturbance )(tw , and 

output )(ty  has the form 

 

 
)()())(()()()()( twtDttutBtxtAtx

f +−+= τ&  (3) 

 

 
))(()()( ttxtCty totτ−= . (4) 

Typically, predictive methods mandate that sources 
declare their future injection rate demands 

[ ]TN tttt )(,),(),()( 21 λλλ K=Λ  up to the maxτ  horizon 

ahead. Practically either we need either to relax or, ide-
ally, to remove this strict constraint which is not tenable 
in Cloud and DCN applications. In either case, we must 
characterize the maximal horizon based on delay obser-
vation statistics. 

Next, we focus on analyzing the internal structure of 
the system and present a system-level modeling ap-
proach and model evaluation techniques. We also pre-
sent a case study for building intelligent sensors to re-
duce the immense dimensionality of DC performance 
modeling.  

C. Case study II: Dimension Reduction  

A datacenter is a heterogeneous interoperation of 
many stand-alone systems with numerous internal tun-
ing parameters. Industry standard components, such as 
operating systems and middleware applications, offer 
numerous performance attributes to be measured by 
monitoring solutions (custom applications or commer-
cial products). Such software provide exhaustive insight 
into the internal parametric changes of the datacenter, 
but easily overwhelm system engineers with superfluous 
data, possibly even hiding important information. It is 
essential to set up a model of the system that describes it 
well, i.e., that incorporates all relevant metrics, but re-
moves the complexity of handling vast amounts of per-
formance attribute data.  

In [19], the authors present an automated means of 
identifying a set of highly relevant system-monitoring 
sensor attributes with respect to an objective function. A 
feature-selection algorithm for is used the discovery of a 
subset (of sensor observations) that is relevant to a sys-
tem-level metric or service-level objective. The rele-
vancy and redundancy are determined by using the mu-
tual information of time series. The goal is to select a 
subset S  of all metrics monitored that meet two re-

quirements: (i) the mutual information of the elements 
of S  against a system-level metric (relevancy) is maxi-

 

 

Figure 14. Dimension reduction in a control loop.  

 

 
Figure 15. (left) Overall CPU utilization of the Apache HTTP server 

(%). (right) Number of network packages sent by the database cluster 

controller (packet/s):Two system monitoring metrics selected as most 

importand by the mRMR algorithm  
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mal, and (ii) the mutual information among the elements 
of S  (redundancy) is minimal. Formally, the mutual in-

formation I  of probability variables x  and y  is de-

fined as: 

 

 
dxdy

ypxp

yxp
yxpyxI

)()(

),(
log),();( ∫∫=  (5) 

These criteria can be optimized by iteratively adding 

elements ix  (representing time series) to S  based on 

the following criterion ( Sm =  and 1−mS  being the set 

of metrics selected prior to the current iteration): 
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The solver algorithm, “minimum-Redundancy-
Maximum-Relevancy” (mRMR) was introduced in [22] 
with a detailed description and case studies.  

Our aim is to reduce the dimension of the DC-
monitoring data by algorithmic analysis. Here is a brief 
summary of the key steps: (i) Instrumenting the infra-
structure with measurement agents; (ii) Running bench-
marks or other workloads on the system; (iii) Collecting 
internal performance attribute values and values of high-
level-integrated metrics as time series; (iv) Selecting a 
metric as objective function; (v) Finding a minimum re-
dundant set of time series (dimensions) that are maxi-
mally relevant for the objective function by iterative so-
lution of (6); (vi) Supplying DC control with this set. 

The mRMR algorithm is used in and evaluated for a 
testbed of a small multi-tier infrastructure with central-
ized system monitoring. The overall throughput ([trans-
actions per second]) is selected as an objective metric, 
the load is doubled at 2/3 of the experiment interval 
(dashed line in Figure 14). Based on the results, we see 
the need for (a) run-time interaction, for example, after 
the appearance of server CPU usage in S  (Figure 14, 

right); new servers can be added to that tier to handle the 
load, and  (b) design-time guidance, for example, the 
number of network packets transmitted (Figure 14, left) 
being in S  can indicate underplanned network link ca-

pacity. These are two of the 10 selected metrics of the 
example result shown in [19]. 

This approach helps to understand the impact chains 
inside the system and to identify control attributes. The 
next step towards realizing intelligent actuation would 
be to provide a classification of attributes to controllable 
parameters and a state-machine-like set of rules that is 
able determine the type of actuation to be carried out.  

 

IV. CONCLUSIONS AND FUTURE WORK 

In this paper, we have shown the challenges of 
benchmarking a DCB Ethernet-federated datacenter, and 
some of the potential methods to overcome these chal-
lenges. Moreover, we have confirmed the benefits of 
rigorous DC benchmarking based on advanced monitor-

ing and modeling. As our main contribution, we have 
proposed a three-pronged approach to DC management, 
which combines workload and resource monitoring with 
performance modeling, both by simulation and analysis.  

These methods build on our recent progress made in 
key independent fields: Ethernet DCB monitoring on 
L2, ARM-based transaction tracing, large-scale HPC 
simulations in VENUS, and analytical modeling of dy-
namic and distributed systems. Using VENUS to 
benchmark 802-based AR, we have demonstrated the 
load-balancing potential of the upcoming 802.1Qau 
standard. Our first benchmarking results showed that the 
DCN performance can be radically improved, some-
times by orders of magnitude. For example, the fully 
adaptive routing scheme proposed in Sect III.1 reduces 
the execution time of the CG benchmark without incur-
ring any of the detriments exhibited by QCN in this 
case. Next, we have used an analytical sensor selection 
method—capable of automatically processing the DC-
monitoring streams—to identify the set of primary met-
rics that dominate the overall DC operation.  Some of 
these benchmarks and simulation tools have already 
been used to shape RapidIO, IBA CM, and the upcom-
ing IEEE 802 DCB Ethernet.  

Next Steps: With the progress toward cloud comput-
ing and mega-node datacenters, system-level optimiza-
tion and management are areas of growing relevance in 
IT. The community is making steady progress in DC 
benchmarking, improved scheduling and load balancing, 
and ultimately, toward automated Cloud management 
and optimization. However, a candid assessment of the 
current situation reveals areas where more effort is 
needed. Particularly vexing is the lack of an established 
set of DC benchmarks, or at least, of a guiding method-
ology to this end. Although most of the standards bod-
ies, researchers, vendors, and customers are asking for 
DC traces, workloads and traffic generators, no such 
data is publicly available yet. This we attribute to the 
following: (i) lack of a standard DC message-passing li-
brary, similar to MPI in HPC, and (ii) lack of monitor-
ing instrumentation capable of (DC and cloud) system-
level benchmarking. The latter lack is sustained by the 
continuing prevalence of segregated, component-level 
benchmarking: CPU, server, JVM, database. etc. 
Despite these challenges, DC workload characterization 
and performance benchmarking constitute a promising 
area of research for the systems community. 
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